भिन्न MCQ Quiz in हिन्दी - Objective Question with Answer for Fractions - मुफ्त [PDF] डाउनलोड करें
Last updated on Jun 3, 2025
Latest Fractions MCQ Objective Questions
भिन्न Question 1:
दिए गए व्यंजक \(\rm 5\frac{1}{2}+3+2\frac{2}{3}+7\frac{1}{2}+6\frac{1}{3}\) .का मान जात कीजिए।
Answer (Detailed Solution Below)
Fractions Question 1 Detailed Solution
दिया गया है:
\(\rm 5\frac{1}{2}+3+2\frac{2}{3}+7\frac{1}{2}+6\frac{1}{3}\)
प्रयुक्त सूत्र:
मूल अंकगणितीय संक्रियाएँ
गणना:
\(\rm 5\frac{1}{2}+3+2\frac{2}{3}+7\frac{1}{2}+6\frac{1}{3}\)
⇒11/2 + 3 + 8/3 + 15/2 + 19/3
⇒ (11 x 3 + 3 x 6 + 8 x 2 + 15 x 3 + 19 x 2) / 6
⇒ (33 + 18 + 16 + 45 + 38) / 6
⇒ 150 / 6 = 25
∴ सही उत्तर विकल्प (3) है।
भिन्न Question 2:
यदि \(\rm \frac{x}{y}=\frac{6}{5}\) है तो \(\rm \frac{6}{7}-\frac{5x-y}{5x+y}\) = ?
Answer (Detailed Solution Below)
Fractions Question 2 Detailed Solution
गणना:
\(\rm \frac{x}{y}=\frac{6}{5}\) ---(1)
अब हमारे पास है,
\(\rm \frac{6}{7}-\frac{5x-y}{5x+y}\)
\(\rm \frac{6}{7}-\frac{y(5\times\frac{x}{y}-1)}{y(5\times \frac{x}{y}+1)}\)
⇒ \(\rm \frac{6}{7}-\frac{5\times\frac{6}{5}-1}{5\times\frac{6}{5}+1}\) [(1) का प्रयोग करने पर]
⇒ \(\rm \frac{6}{7}-\frac{6-1}{6+1}\)
⇒ \(\frac{6}{7}-\frac{5}{7} = \frac{1}{7}\)
⇒ \(\rm \frac{6}{7}-\frac{5x-y}{5x+y}=\frac{1}{7}\)
∴ सही उत्तर \(\frac{1}{7}\) है।
भिन्न Question 3:
\(\rm \left[(32\div8)\times \left\{\frac{15}{5}+\frac{30}{5}\times (7-2)\right\}\right]\) का मान ज्ञात कीजिए।
Answer (Detailed Solution Below)
Fractions Question 3 Detailed Solution
दिया गया है:
व्यंजक: [(32 ÷ 8) × {(15 ÷ 5) + (30 ÷ 5) × (7 - 2)}]
गणना:
चरण 1: कोष्ठकों के अंदर की संख्याओं को सरल कीजिए:
32 ÷ 8 = 4
15 ÷ 5 = 3
30 ÷ 5 = 6
7 - 2 = 5
चरण 2: गुणा को सरल कीजिए:
(6 × 5) = 30
चरण 3: परिणामों को जोड़िए:
3 + 30 = 33
चरण 4: परिणामों को गुणा कीजिए:
4 × 33 = 132
∴ व्यंजक का मान 132 है।
भिन्न Question 4:
\(\frac{0.0203 \times 2.92}{0.7 \times 0.0365 \times 2.9}\) का मान कितना है?
Answer (Detailed Solution Below)
Fractions Question 4 Detailed Solution
गणना:
दिया गया व्यंजक,
⇒\(\frac{0.0203 \times 2.92}{0.7 \times 0.0365 \times 2.9}\)
अंश और हर से दशमलव हटाइए:
⇒\(\frac{203 \times 292\times 10^6}{7 \times 365 \times 29\times 10^6}\)
अंश और हर से पदों को निरस्त करने पर:
⇒\(\frac{292}{365}\)
⇒0.8
विकल्प 1 सही उत्तर है।
भिन्न Question 5:
\(\frac{7}{10} \div 1 \frac{2}{5} \text { of } \frac{3}{4}-1 \frac{1}{4} \text { of } \frac{2}{3} \div 4 \frac{1}{6}+\frac{1}{15}\) है:
Answer (Detailed Solution Below)
Fractions Question 5 Detailed Solution
दिया गया है:
व्यंजक \(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\)
प्रयुक्त सूत्र:
नीचे दी गई तालिका के अनुसार BODMAS नियम का अनुसरण करते हैं:
गणना:
\(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\)
⇒ \(\dfrac{7}{10}\) ÷ \(\dfrac{7}{5}\) × \(\dfrac{3}{4}\) - \(\dfrac{5}{4}\) × \(\dfrac{2}{3}\) ÷ \(\dfrac{25}{6}\) + \(\dfrac{1}{15}\)
⇒ \(\dfrac{7}{10}\) ÷ \(\dfrac{21}{20}\) - \(\dfrac{5}{6}\) ÷ \(\dfrac{25}{6}\) + \(\dfrac{1}{15}\)
⇒ \(\dfrac{7}{10}\) × \(\dfrac{20}{21}\) - \(\dfrac{5}{6}\) × \(\dfrac{6}{25}\) + \(\dfrac{1}{15}\)
∴ \(\dfrac{7}{10} ÷ 1 \dfrac{2}{5} \text { of } \dfrac{3}{4}-1 \dfrac{1}{4} \text { of } \dfrac{2}{3} ÷ 4 \dfrac{1}{6}+\dfrac{1}{15}\) का मान \(\dfrac{8}{15}\) है
Top Fractions MCQ Objective Questions
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\) का मान क्या है?
Answer (Detailed Solution Below)
Fractions Question 6 Detailed Solution
Download Solution PDFउपाय:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37
नीचे दिए गए भिन्नों में से कौन-सा भिन्न 5/8 जोड़ने पर, परिणाम के रूप में 1 देता है?
Answer (Detailed Solution Below)
Fractions Question 7 Detailed Solution
Download Solution PDFमाना वह भिन्न x है।
⇒ x + 5/8 = 1
⇒ x = 1 – 5/8
⇒ x = 3/8 = 6/16यदि अंश 7/13, 2/3, 4/11, 5/9 को आरोही क्रम में व्यवस्थित किया जाता है, तो सही अनुक्रम कौन-सा है?
Answer (Detailed Solution Below)
Fractions Question 8 Detailed Solution
Download Solution PDF(7/13) = 0.538
(2/3) = 0.666
(4/11) = 0.3636
(5/9) = 0.5555
2/3, 7/13, 4/11, 5/9 में से
2/3, 5/9 से बड़ी संख्या है उसके बाद 7/13 है और 4/11 सबसे छोटी संख्या है|
इसलिए आरोही क्रम 4/11, 7/13, 5/9, 2/3 होगा|\(4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\) का मान ज्ञात कीजिये
Answer (Detailed Solution Below)
Fractions Question 9 Detailed Solution
Download Solution PDF\(\Rightarrow 4\frac{1}{5}-\left[ 3\frac{1}{3}-\left\{ 2\frac{1}{2}-\left( \frac{1}{3}+\frac{1}{6}-\frac{1}{12} \right) \right\} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3}-\left\{ {\frac{5}{2} - \left( {\frac{{4{\rm{\;}} + {\rm{\;}}2{\rm{\;}}-{\rm{\;}}1}}{{12}}} \right)} \right\}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \left\{ {\frac{5}{2} - \frac{5}{{12}}} \right\}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \left[ {\frac{{10}}{3} - \frac{{25}}{{12}}} \right]\)
\(\Rightarrow \frac{{21}}{5} - \frac{{15}}{{12}}\)
\(\Rightarrow \frac{{21}}{5} - \frac{5}{4}\)
\(\Rightarrow \frac{{84 - 25{\rm{\;}}}}{{20}}\)
⇒ 59/20
एक हॉल में मौजूद लोगों में से 7/9 लोग उपलब्ध कुर्सियों में से 9/13 कुर्सियों पर बैठे हैं और शेष खड़े हैं। यदि 28 कुर्सियों खाली हैं, तो कितनी कुर्सियों अभी भी खाली होंगी यदि हॉल में हर कोई बैठता है?
Answer (Detailed Solution Below)
Fractions Question 10 Detailed Solution
Download Solution PDFमान लीजिये लोगों की संख्या x है और कुर्सियों की संख्या y है।
उपलब्ध कुर्सियों की संख्या = y × (9/13) = 9y/13
खाली कुर्सियों की संख्या = y - (9y/13) = 4y/13
दिया गया है, खाली कुर्सियों की संख्या = 28
प्रश्नानुसार,
4y/13 = 28
y = 28 × (13/4) = 91
कुर्सियों की कुल संख्या = 91
कुर्सियों की संख्या जिन पर लोग बैठे हैं = 91 - 28 = 63
बैठे हुए लोगों की संख्या = x × (7/9) = 7x/9
प्रश्नानुसार,
7x/9 = 63
x = 63 × (9/7) = 81
लोगों की कुल संख्या है = 81
यदि हॉल में हर कोई बैठा हुआ था तो = 91 - 81 = 10 कुर्सियों अभी भी खाली होंगी\(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\) का मान ज्ञात कीजिए:
Answer (Detailed Solution Below)
Fractions Question 11 Detailed Solution
Download Solution PDFप्रयुक्त सूत्र:
a2 - b2 = (a + b)(a - b)
गणना:
⇒ \(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)
⇒ [(p + q - r)(p - q + r)]/[(p + q + r)(p - q + r)] + [(p + q - r)(q - p + r)]/[(p + q + r)(p + q - r)] + [(p - q + r)(q -p + r)]/[(p + q + r)(q - p + r)]
⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]
⇒ [(p + q - r)]/[(p + q + r)] + [q - p + r)]/[(p + q + r)] + [(p - q + r)]/[(p + q + r)]
⇒ (p + q + r)/(p + q + r)
⇒ 1.
अभीष्ट मान 1 है।
Shortcut Trick
मान लीजिए कि p = q = r = 1 है
\(\rm\frac{p^2-(q-r)^2}{(p+r)^2-q^2}+\frac{q^2-(p-r)^2}{(p+q)^2-r^2}+\frac{r^2-(p-q)^2}{(q+r)^2-p^2}\)
⇒ \(\rm\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}+\frac{1^2-(1-1)^2}{(1+1)^2-1^2}\)
⇒ \(\rm\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}+\frac{1-0}{(4-1)}\)
⇒ 1/3 + 1/3 + 1/3 = 1
यदि (5x - 2y) ∶ (x - 2y) = 9 ∶ 17 है, तो \(\rm \frac{9x}{13y}\)का मान ज्ञात कीजिए।
Answer (Detailed Solution Below)
Fractions Question 12 Detailed Solution
Download Solution PDFदिया गया है:
(5x - 2y) ∶ (x - 2y) = 9 ∶ 17
गणना:
दिए गए अनुपात को इस प्रकार लिखा जा सकता है:
(5x - 2y)/(x - 2y) = 9/17
17 × (5x - 2y) = 9 × (x - 2y)
85x - 34y = 9x - 18y
76x = 16y
x/y = 16/76
x/y = 4/19
9 × (4/19) / 13 = 36/247
इसलिए, 9x/13y = 36/247
निम्नलिखित में से कौन सी भिन्न सबसे बड़ी है?
Answer (Detailed Solution Below)
Fractions Question 13 Detailed Solution
Download Solution PDFदिया गया है:
भिन्न 13/19, 25/31, 28/31, 70/79 हैं।
गणना:
मान हैं-
13/19 = 0.68
25/31 = 0.80
28/31 = 0.90
70/79 = 0.88
∴ विकल्प C सही है।
यदि \(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\) है, तो 'x' का मान ज्ञात कीजिए।
Answer (Detailed Solution Below)
Fractions Question 14 Detailed Solution
Download Solution PDFदिया गया है:
\(\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{1}{{1{\rm{\;}} + {\rm{\;}}\frac{{\rm{x}}}{{1{\rm{\;}} - {\rm{\;x}}}}}}}}{\rm{\;}} = {\rm{\;}}1\)
गणना:
\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}\frac{{1 - {\rm{x}}}}{{1 - {\rm{x\;}} + {\rm{\;x}}}}}}{\rm{\;}} = {\rm{\;}}1 \)
\(\Rightarrow {\rm{\;}}\frac{{5{\rm{x}}}}{{1{\rm{\;}} + {\rm{\;}}1 - {\rm{x}}}}{\rm{\;}} = {\rm{\;}}1\)
⇒ 5x/(2 – x) = 1
⇒ 5x = 2 – x
⇒ 6x = 2
⇒ x = 2/6
∴ x का अभीष्ट मान 1/3 है।
निम्नलिखित प्रश्न में, प्रश्न चिह्न '?' के स्थान पर क्या आयेगा?
\(5\frac{1}{6} - 3\frac{4}{9} + \ ? = \frac{7}{3} \times 4\frac{1}{6}\)
Answer (Detailed Solution Below)
Fractions Question 15 Detailed Solution
Download Solution PDFअवधारणा:
प्रश्न को हल करने के लिए, नीचे दिए गए क्रम के, BODMAS नियम का पालन करेंगे,
गणना :
अब, दिया गया व्यंजक है,
\(\Rightarrow 5\frac{1}{6} - 3\frac{4}{9} + ? = \frac{7}{3} \times 4\frac{1}{6}\)
\(\Rightarrow {\rm{\;}}\frac{{31}}{6} - \frac{{31}}{9} + ? = \frac{7}{3} \times \frac{{25}}{6}\)
\(\Rightarrow 31\left( {\frac{1}{6} - \frac{1}{9}} \right) + \;? = \left( {\frac{{175}}{{18}}} \right)\)
\(\Rightarrow {\rm{\;}}31(\frac{3}{{54}}) + ? = \frac{{175}}{{18}}\)
⇒ ? = 144/18
⇒ ? = 8