Random Processes MCQ Quiz in मल्याळम - Objective Question with Answer for Random Processes - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 9, 2025
Latest Random Processes MCQ Objective Questions
Top Random Processes MCQ Objective Questions
Random Processes Question 1:
If the autocorrelation function of a random process X(t) is R(τ) its power spectral density is:
Answer (Detailed Solution Below)
Random Processes Question 1 Detailed Solution
Analysis:
The power spectral density (PSD) of a WSS process is defined as the Fourier transform of its Autocorrelation function.
It is given as:
\({S_X}\left( f \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {R_x}\left( \tau \right){e^{ - j2\pi f\tau }} \cdot d\tau \)
Note:
The Autocorrelation can be obtained from the PSD through inverse transform as:
\({R_x}\left( \tau \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {S_X}\left( f \right){e^{j2\pi f\tau }}df\)
SX (f) is real and SX (f) ≥ 0
SX (f) = SX (-f)
RX (0) = ∫ SX (f) ⋅ df = Power of x(t)
Random Processes Question 2:
The Autocorrelation of a random process X(t) is \(R_{xx}(\tau)=5+4e^{-4\tau^2}\), the fraction of the power lying in the frequency band -√2 ≤ ω ≤ √2 is ______
Assume Q (0.5) = 0.3
Answer (Detailed Solution Below) 0.55 - 0.65
Random Processes Question 2 Detailed Solution
Concept:
RX = RXX (0)
Calculation:
\(R_{XX}(\tau)=5+4e^{-4\tau^2}\)
\(R_{XX}(0)=5+4e^0=9 W\)
\(S_{XX}(ω)=5(2\pi\delta(ω))+4√{\dfrac{\pi}{2}}e^{\frac{-ω^2}{4(4)}}\)
Power within (-√2 ≤ ω ≤ √2) is:-
\(\dfrac{1}{2\pi}\displaystyle\int^{\sqrt{2}}_{-\sqrt{2}}\delta_{XX}(ω)\ dω=\dfrac{1}{2\pi}5(2\pi)+\dfrac{4}{2\pi}\displaystyle\int^{\sqrt{2}}_{-\sqrt{2}}\sqrt{\dfrac{\pi}{4}}e^{\frac{-ω^2}{4\times4}}\)
Let, \(\dfrac{ω}{√{2}}=x\)
∴ √ω = 2√2 dx
\(=5+\dfrac{1}{2\pi}\displaystyle\int^{\frac{1}{2}}_{-\frac{1}{2}}\sqrt{\dfrac{\pi}{4}}e^{\frac{-x^2}{2}}(2\sqrt{2})\ dx\)
\(=5+\dfrac{\sqrt{2\pi}}{2\pi}\displaystyle\int^{\frac{1}{2}}_{-\frac{1}{2}}e^{\frac{-x^2}{2}}\ dx\)
\(=5+\dfrac{1}{2\pi}\displaystyle\int^{\frac{1}{2}}_{-\frac{1}{2}}e^{\frac{-x^2}{2}}\ dx\)
\(5+\left[1-2Q\left(\dfrac{1}{2}\right)\right]\)
= 5 + [1 - 0.6]
= 5 + 0.4 = 5.4 W
Fraction of power within, -√2 ≤ ω ≤ √2 is \(\dfrac{5.4}{9}=0.6\)
Random Processes Question 3:
The power spectral density of a real process X(t) for positive frequencies is shown below. The values of E[X2(t)] is
Answer (Detailed Solution Below)
Random Processes Question 3 Detailed Solution
Concept:
The power spectral density (PSD) of a WSS process is defined as the Fourier transform of its Autocorrelation function. It is given as:
\({S_X}\left( f \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {R_x}\left( \tau \right){e^{ - j2\pi f\tau }} \cdot d\tau \)
The average power of a stationary random process is given as:
\(E\left[ {{X^2}} \right] = \mathop {\lim }\limits_{\tau \to 0} {R_{xx}}\left( \tau \right)\)
Calculation:
\(E\left[ {{X^2}\left( t \right)} \right] = \frac{1}{{2\pi }}\mathop \smallint \nolimits_{ - \infty }^\infty {S_X}\left( \omega \right)d\omega \)
\(= \frac{1}{{2\pi }}2\mathop \smallint \nolimits_0^\infty {S_X}\left( \omega \right)d\omega \)
\(= \frac{1}{\pi }\left[ {200\pi + 30\pi \times {{10}^2}} \right]\)
= 3200Random Processes Question 4:
The auto correlation function RX(τ) of a wide-sense stationary random process X(t) is shown in the figure.
The average power of X(t) is _______
Answer (Detailed Solution Below) 2
Random Processes Question 4 Detailed Solution
Concept:
Power spectral density of a wide sense stationary process is a positive real function.
It is related to Auto co-relation function Rx(τ) by:
\({R_x}\left( \tau \right)\begin{array}{*{20}{c}} {Fourier}\\ \leftrightarrow \\ {transform} \end{array}{S_x}\left( f \right)\)For wide – sense stationary random process, the power of a signal is given by Rx(0).
Application:
Rx(0) = 2
Average power of signal = Rx(0) = 2
Random Processes Question 5:
The auto-correction function of white noise is represented as
Answer (Detailed Solution Below)
Random Processes Question 5 Detailed Solution
White noise is that signal whose frequency spectrum is uniform i.e. it has flat spectral density.
The power spectral density (PSD) of white noise is uniform throughout the frequency spectrum as shown:
The spectral density of white noise is Uniform and the autocorrelation function of White noise is the Delta function.
Derivation:
The power spectral density is basically the Fourier transform of the autocorrelation function of the power signal, i.e.
\({S_x}\left( f \right) = F.T.\left\{ {{R_x}\left( \tau \right)} \right\}\)
Also, the inverse Fourier transform of a constant function is a unit impulse.
Now, the auto-correlation is the inverse Fourier transform (IFT) of power spectral density function.
\(\rm{R_x\left(\tau\right)\mathop \to \limits^{IFT}S_X\left(f\right)}\)
The inverse Fourier transform of the power spectrum of white noise will be an impulse as shown:
\(\rm{R_x\left(\tau\right)=\frac{\eta}{2}\delta\left(\tau\right)}\)
Random Processes Question 6:
Consider a random process Z(t) = 2X(t) + 3Y(t), where X(t) and Y(t) are mutually orthogonal stationary random processes with zero mean and autocorrelation functions \({R_{XX}}\left( \tau \right) = 5{e^{ - 2\tau }}\) and \({R_{YY}}\left( \tau \right) = 3\tau + 7\), respectively. The power in Z(t) is:
Answer (Detailed Solution Below)
Random Processes Question 6 Detailed Solution
Concept:
The mean of random process X(t), also called as the expectation of the random process is represented by E[X(t)].
Properties:
1) \(E\left[ {AX\left( t \right) + B} \right] = AE\left[ {X\left( t \right)} \right] + B\)
2) \(\;E\left[ {{{\left( {AX\left( t \right) + BY\left( t \right)} \right)}^2}} \right] = {A^2}\;E\left[ {{X^2}\left( t \right)} \right] + {B^2}\;E\left[ {{Y^2}\left( t \right)} \right] + 2A.B\;E\left[ {X\left( t \right)Y\left( t \right)} \right]\)
3) E[X2(t)] of a random process X(t) gives the power in X(t) and is equal to the value of autocorrelation function at τ = 0, i.e.
\(E\left[ {{X^2}\left( t \right)} \right] = {R_{XX}}\left( 0 \right)\);
RXX(τ) is the autocorrelation function of X(t)
4) If the two processes are orthogonal, then their cross-correlation is zero, i.e. for orthogonal processes:
\({R_{XY}}\left( \tau \right) = E\left[ {X\left( t \right)Y\left( t \right)} \right] = 0\)
Calculation:
Given: E[X(t)] = 0, E[Y(t)] = 0, and E[X(t)Y(t)] = 0 (mutually orthogonal)
\(E\left[ {Z\left( t \right)} \right] = E\left[ {2X\left( t \right) + 3Y\left( t \right)} \right]\)
\( = 2E\left[ {X\left( t \right)} \right] + 3E\left[ {Y\left( t \right)} \right]\)
Putting on the respective values, we get:
\(E\left[ {Z\left( t \right)} \right] = 2 \times 0 + 3 \times 0\)
\(E\left[ {Z\left( t \right)} \right] = 0\)
E[X2(t)] = RXX(0) = 5e-2×0 = 5
E[Y2(t)] = RYY(0) = 3 (0) + 7 = 7
\(E\left[ {{Z^2}\left( t \right)} \right] = E\left[ {{{\left( {2X\left( t \right) + 3Y\left( t \right)} \right)}^2}} \right]\)
\(= E\left[ {4{X^2}\left( t \right) + 9{Y^2}\left( t \right) + 12X\left( t \right)Y\left( t \right)} \right]\)
\( = 4E\left[ {{X^2}\left( t \right)} \right] + 9E\left[ {{Y^2}\left( t \right)} \right] + 12E\left[ {X\left( t \right)Y\left( t \right)} \right]\)
\(= 4 \times 5 + 9 \times 7 = 83\)
∴ The Power in Z(t), E[Z2(t)] = 83
Random Processes Question 7:
The autocorrelation function of the sinusoidal signal x(t) = A cos (ω0 t + ϕ) is:
Answer (Detailed Solution Below)
Random Processes Question 7 Detailed Solution
Concept:
Autocorrelation function [R (τ)] of the power signal is given as:
\(R\left( \tau \right) = \mathop {{\rm{lt}}}\limits_{t \to \infty } \frac{ \bot }{T}\mathop \smallint \nolimits_{ - T/2}^{T/2} x\left( t \right)x\left( {t - \tau } \right)dt\)
Calculation:
Given:
x(t) = A cos (ω0t + ϕ)
\(ACF:R\left( \tau \right) = \mathop {{\rm{lt}}}\limits_{t \to \infty } \frac{ \bot }{T}\mathop \smallint \nolimits_{ - T/2}^{T/2} x\left( t \right) \cdot x\left( {t - \tau } \right)dt\)
\(\mathop {{\rm{Lt}}}\limits_{t \to \infty } \frac{ \bot }{T}\mathop \smallint \nolimits_{ - T/2}^{T/2} \left[ {A\cos \left( {{\omega _0}t + \phi } \right) \cdot A\cos \left( {{\omega _0}\left( {t - \tau } \right) + \phi } \right)} \right] \cdot dt\)
\(\mathop {{\rm{Lt}}}\limits_{T \to \infty } \frac{{{A^2}}}{{2T}}\mathop \smallint \nolimits_{ - T/2}^{T/2} \left[ {\cos \left( {2{\omega _0}t - {\omega _0}\tau + 2\phi } \right) + \cos {\omega _0}\tau } \right]dt\)
\(\mathop {{\rm{Lt}}}\limits_{T \to \infty } \frac{{{A^2}}}{{2T}}\cos {\omega _0}\tau \mathop \smallint \nolimits_{ - T/2}^{T/2} \cdot dt\)
\(\therefore \mathop \smallint \nolimits_{ - T/2}^{T/2} \cos \left( {2{\omega _0}t - {\omega _0}\tau + 2\phi } \right) = 0\)
\(\mathop {{\rm{Lt}}}\limits_{T \to \infty } \frac{{{A^2}}}{{2T}}\cos {\omega _0}\tau .T\)
\(R\left( \tau \right) = \frac{{{A^2}}}{2}\cos {\omega _0}\tau \)
Random Processes Question 8:
Spectral density of white noise:
Answer (Detailed Solution Below)
Random Processes Question 8 Detailed Solution
White noise is that signal whose frequency spectrum is uniform i.e. it has flat spectral density.
The power spectral density (PSD) of white noise is uniform throughout the frequency spectrum as shown:
Random Processes Question 9:
Consider a real valued source whose samples are independent and identically distributed random variables with the probability density function, f(x), as shown in the figure.
Consider a 1 bit quantizer that maps positive samples to value 𝛼 and others to value 𝛽. If α* and β* are the respective choices for α and β that minimize the mean square quantization error, then (α* - β*) = _________ (rounded off to two decimal places).
Answer (Detailed Solution Below) 1.15 - 1.17
Random Processes Question 9 Detailed Solution
Solution:
Quantization noise power for positive values of x,
(QNP)P = E[(x-α)2]
\(\begin{aligned} &=\left.\frac{(x-α)^{3}}{3} \cdot \frac{1}{2}\right|_{0} ^{1} \\ \end{aligned}\)
\(\begin{aligned} &=\frac{1}{6}\left[(1-α)^{3}-(-α)^{3}\right] \\ \end{aligned}\)
\(\begin{aligned} &=\frac{1}{6}\left[(1-α)^{3}+α^{3}\right] \\ \end{aligned}\)
\(\begin{aligned} &=\frac{1}{6}\left[1-α^{3}+3 α^{2}-3 α+α^{3}\right] \\ \end{aligned}\)
\(\begin{aligned} &=\frac{1}{6}\left[1+3 α^{2}-3 α\right] \\ \end{aligned}\)
Now , taking differentiation on both side with respect to α .
\(\frac{d}{d α} (Q N P)_P=0+6 α-3=0\)
α = 1/2
α* = 1/2 =0.5
Quantization noise power for negative values of x,
(QNP)N = E[(x-β)2]
\(\begin{aligned} &=\int_{-2}^{0}(x-β)^{2}\left(\frac{1}{4} x+\frac{1}{2}\right) d x \\ \end{aligned}\)
\(\begin{aligned} &=\frac{1}{4} \int_{-2}^{0}(x-β)^{2} x d x+\frac{1}{2} \int_{-2}^{0}(x-β)^{2} d x \\ \end{aligned}\)
\(\begin{aligned} &=\frac{1}{4}\left[\int_{-2}^{0}\left(x^{2}+β^{2}-2 β x\right) x d x\right] +\frac{1}{2}\left[\int_{-2}^{0}\left(x^{2}+β^{2}-2 β x\right) d x\right] \\ \end{aligned}\)
\(\begin{aligned} &=\frac{1}{4}\left[\frac{\left(x^{4}\right)_{-2}^{0}}{4}+\frac{β^{2}}{2}\left(x^{2}\right)_{-2}^{0}-\frac{2}{3} β\left(x^{3}\right)_{-2}^{0}\right] +\frac{1}{2}\left[\frac{8}{3}+2 β^{2}+4 β\right] \end{aligned}\)
\(=\frac{1}{4}\left[-4-2 β^{2}-\frac{16}{3} β\right]+\frac{1}{2}\left[\frac{8}{3}+2 β^{2}+4 β\right]\)
Now , taking differentiation on both side with respect to β .
\(\frac{d}{d β} (Q N P)_N=-4 β-\frac{16}{3}+2 β+4=0 ~\)
2β = -4/3
β = -2/3
β* = -2/3 = - 0.667
So,
α* -β* = 0.5 - (- 0.667)
α* -β* = 1.167
Random Processes Question 10:
If the power spectral density is \(\frac{\eta }{2}\frac{W}{{Hz}}\) , and the autocorrelation function is defined by:
\(R(\tau ) = \frac{\eta }{2}\int\limits_{ - \infty }^{ + \infty } {{e^{j\omega \tau }}} df\) .
The integral on the right represents the Fourier transform of:
Answer (Detailed Solution Below)
Random Processes Question 10 Detailed Solution
Concept:
Autocorrelation function and the energy spectral density form Fourier Transform pairs, i.e.
\({R_{XX}}\left( \tau \right)\mathop \leftrightarrow \limits^{F.T.} {S_{XX}}\left( \omega \right)\)
SXX(ω) = Energy Spectral Density calculated as:
\({S_{XX}}\left( \omega \right) = \;\mathop \smallint \nolimits_\infty ^\infty {R_{XX}}\left( \tau \right){e^{ - j\omega \tau }}\;d\tau \)
Analysis:
Fourier transform of Autocorrelation function ↔ Power spectral density
\(\frac{\eta }{2}\int\limits_{ - \infty }^{ + \infty } {{e^{j\omega \tau }}df ↔ \frac{\eta }{2}} \)
\(\int\limits_{ - \infty }^{ + \infty } {{e^{j\omega \tau }}df ↔ 1} \)
Hence it's a delta function.