Question
Download Solution PDFआव्यूह A को सममित और विषम-सममित के योग में विभाजित कीजिए।
A = \(\rm \begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}\)
निम्नलिखित में से कौन-सा विषम-सममित आव्यूह है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
आव्यूह X को सममित और विषम-सममित आव्यूह के योग के रूप में लिखा जा सकता है जो निम्न हैं
P(सममित) = \(\rm 1\over2\)(X + XT)
Q(विषम-सममित) = \(\rm 1\over2\)(X - XT)
गणना:
A = \(\rm \begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}\)
AT = \(\rm \begin{bmatrix} 2 & 3 & 1\\ -4& 1 & -3\\ 3& -2 & 5 \end{bmatrix}\)
P(सममित आव्यूह) = \(\rm 1\over2\)(A + AT)
⇒ P = \(\rm {1\over2}\left(\begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}+ \begin{bmatrix} 2 & 3 & 1\\ -4& 1 & -3\\ 3& -2 & 5 \end{bmatrix}\right)\)
⇒ P = \(\rm \begin{bmatrix} 2 & -0.5 & 2\\ -0.5& 1 & -2.5\\ 2& -2.5 & 5 \end{bmatrix}\)
Q(विषम-सममित) = \(\rm 1\over2\)(A - AT)
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.