फलन f(x) = \( \rm \frac{(2x^{2} + 3x + 4)}{x}\) का दूसरा अवकलज ज्ञात कीजिए। 

  1. 4x-3
  2. -8x-3
  3. 8x-3
  4.  2 – 4x-2

Answer (Detailed Solution Below)

Option 3 : 8x-3
Free
UP TGT Hindi FT 1
9.8 K Users
125 Questions 500 Marks 120 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

\(\rm \frac{\mathrm{d} (x^n)}{\mathrm{d} x} = nx^{n - 1}\)

गणना:

दिया गया है: f(x) = \( \rm \frac{(2x^{2} + 3x + 4)}{x}\)

x के संबंध में अवकलन करने पर

f'(x) = \(\rm \frac{\mathrm{d} \frac{(2x^{2} + 3x + 4)}{x}}{\mathrm{d} x} \)

\(\rm \frac{\mathrm{d} (2x + 3 + \frac{4}{x})}{\mathrm{d} x}\)

= 2 – 4x-2

फिर से, x के संबंध में अवकलन करने पर

f'(x) = 0 + 8x-3

= 8x-3

∴ आवश्यक मान​ 8x-3 है। 

Latest UP TGT Updates

Last updated on May 6, 2025

-> The UP TGT Exam for Advt. No. 01/2022 will be held on 21st & 22nd July 2025.

-> The UP TGT Notification (2022) was released for 3539 vacancies.

-> The UP TGT 2025 Notification is expected to be released soon. Over 38000 vacancies are expected to be announced for the recruitment of Teachers in Uttar Pradesh. 

-> Prepare for the exam using UP TGT Previous Year Papers.

More Differential Calculus Questions

Get Free Access Now
Hot Links: lucky teen patti teen patti download apk teen patti star apk