माना \(\rm \vec a =\hat i +\hat j +\hat k,\; \vec b =\hat i -\hat j + \hat k\) और c = î - ĵ - k̂ तीन सदिश है। \(\rm \vec a\) और \(\rm \vec b\) के तल में एक सदिश \(\rm \vec v\) क्या है, जिसका \(\rm \frac {\vec c} {|\vec c|}\) पर प्रक्षेपण \(\frac 1 {\sqrt 3}\) है?

This question was previously asked in
NIMCET 2015 Official Paper
View all NIMCET Papers >
  1. 3î - ĵ + 3k̂
  2. î - 3ĵ + 3k̂
  3. 5î - 2ĵ + 5k̂
  4. 2î - ĵ + 3k̂

Answer (Detailed Solution Below)

Option 1 : 3î - ĵ + 3k̂
Free
NIMCET 2020 Official Paper
10.7 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

गणना:

\(\rm \vec a =\hat i +\hat j +\hat k,\; \vec b =\hat i -\hat j + \hat k\) और c = î - ĵ - k̂

दिया गया है:  \(\rm \vec a\) और \(\rm \vec b\) के तल में सदिश \(\rm \vec v\),

इसलिए, \(\rm \vec v = \vec a + λ \vec b\)

\(\rm \vec v =(\hat i +\hat j +\hat k ) \; + λ (\hat i -\hat j + \hat k)\)

= (1 + )î + (1 - λ)ĵ + (1 + λ)k̂ .... (1)

\(\rm \frac {\vec c} {|\vec c|}\) पर \(\rm \vec v\) का प्रक्षेपण = \(\frac 1 {\sqrt 3}\)

\(\rm \vec v=\rm \frac {\vec c} {|\vec c|}=\frac 1 {\sqrt 3}\)

\(\frac {(1 + λ) - (1 - λ) - (1 + λ)}{\sqrt3} = \frac {1}{\sqrt 3}\)

⇒ -(1 - λ) = 1

∴ λ = 2 

अब, λ का मान समीकरण (1) में रखने पर, हमें प्राप्त होता है 

\(\rm \vec v\) = 3î - + 3k̂

Latest NIMCET Updates

Last updated on Jun 12, 2025

->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.

-> NIMCET exam was conducted on June 8, 2025.

-> NIMCET 2025 admit card was out on June 3, 2025.

-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti gold old version teen patti plus teen patti wala game teen patti party teen patti winner