Question
Download Solution PDFतल 2x - y - 2z + 1 = 0 और 3x - 4y + 5z - 3 = 0 के बीच का कोण क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
माना कि a1x + b1y + c1z + d1 = 0 और a2x + b2y + c2z + d2 = 0 कोई भी दो तल है, तो उनके बीच का कोण निम्न दिया गया है,
\(\rm \cos \theta = \left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}\times\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |\)
गणना:
दिए गए तल 2x - y - 2z + 1 = 0 और 3x - 4y + 5z - 3 = 0 हैं।
हम जानते हैं कि, a1x + b1y + c1z + d1 = 0 और a2x + b2y + c2z + d2 = 0 कोई भी दो तल है, तो उनके बीच का कोण निम्न दिया गया है,
\(\rm \cos \theta = \left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}\times\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |\)
यहाँ, a1 = 2, a2 = 3, b1 = - 1, b2 = - 4, c1 = - 2, c2 = 5.
\(\rm \cos \theta = \left | \frac{(2)(3)+(-1)(-4)+(-2)(5)}{\sqrt{2^2+(-1)^2+(-2)^2}\times\sqrt{3^2+(-4)^2+5^2}} \right |\)
\(\cos\theta = 0\)
⇒ \(\rm \theta = \frac{\pi}{2}\)
अतः तल 2x - y - 2z + 1 = 0 और 3x - 4y + 5z - 3 = 0 के बीच का कोण \(\frac{\pi}{2}\) है।
Last updated on Jun 20, 2025
-> The Indian Navy SSR Agniveeer Merit List has been released on the official website.
-> The Indian Navy Agniveer SSR CBT Exam was conducted from 25th to 26th May 2025.
->The application window was open from 29th March 2025 to 16th April 2025.
-> The Indian Navy SSR Agniveer Application Link is active on the official website of the Indian Navy.
.->Only unmarried males and females can apply for Indian Navy SSR Recruitment 2025.
-> The selection process includes a Computer Based Test, Written Exam, Physical Fitness Test (PFT), and Medical Examination.
->Candidates Qualified in 10+2 with Mathematics & Physics from a recognized Board with a minimum 50% marks in aggregate can apply for the vacancy.
-> With a salary of Rs. 30,000, it is a golden opportunity for defence job seekers.
-> Candidates must go through the Indian Navy SSR Agniveer Previous Year Papers and Agniveer Navy SSR mock tests to practice a variety of questions for the exam.