If \(A = \left[ {\begin{array}{*{20}{c}} { - \;1}&5&1\\ 2&3&4\\ 7&0&9 \end{array}} \right] = \frac{1}{2} \cdot (P + Q)\) where P is symmetric and Q is skew symmetric matrix then P and Q are ?

  1. \(P = \;\left[ {\begin{array}{*{20}{c}} { - \;2}&7&8\\ 7&6&4\\ 8&4&{18} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&3&{ - \;6}\\ { - \;3}&0&4\\ 6&{ - \;4}&0 \end{array}} \right]\)
  2. \(P = \;\left[ {\begin{array}{*{20}{c}} { \;2}&7&8\\ 7&6&4\\ 8&4&{18} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&3&{ - \;6}\\ { - \;3}&0&4\\ 6&{ - \;4}&0 \end{array}} \right]\)
  3. \(P = \;\left[ {\begin{array}{*{20}{c}} { - \;2}&7&8\\ 7&6&4\\ 8&4&{18} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&3&{ - \;6}\\ {\;3}&0&4\\ 6&{ - \;4}&0 \end{array}} \right]\)
  4. \(P = \;\left[ {\begin{array}{*{20}{c}} { - \;2}&7&8\\ 7&6&4\\ 8&4&{18} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&3&{ - \;6}\\ {\;3}&0&4\\ 6&{\;4}&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(P = \;\left[ {\begin{array}{*{20}{c}} { - \;2}&7&8\\ 7&6&4\\ 8&4&{18} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&3&{ - \;6}\\ { - \;3}&0&4\\ 6&{ - \;4}&0 \end{array}} \right]\)
Free
NDA 01/2025: English Subject Test
5.7 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

Concept:

 
  • Symmetric Matrix: Any real square matrix A = (aij) is said to be symmetric matrix if and only if aij = aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = A’ then A is said to be a symmetric matrix.
  • Skew-symmetric Matrix: Any real square matrix A = (aij) is said to be skew-symmetric matrix if and only if aij = - aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A =- A’ then A is said to be a skew-symmetric matrix.
  • Any real square matrix say A, can be expressed as sum of symmetric and skew-symmetric matrix.

    i.e \(A = \frac{1}{2}\;\left( {A + A'} \right) + \frac{1}{2}\;\left( {A - A'} \right)\) where A + A’ is symmetric and A – A’ is skew-symmetric matrix.

Calculation:

Given: \(A = \left[ {\begin{array}{*{20}{c}} { - \;1}&5&1\\ 2&3&4\\ 7&0&9 \end{array}} \right] = \frac{1}{2} \cdot (P + Q)\) where P is symmetric and Q is skew symmetric matrix

Here we have to find the matrix P and Q

As we know that, any square matrix can be be expressed as sum of symmetric and skew-symmetric matrix.

i.e If A is a square matrix then A can be expressed as: \(A = \frac{1}{2}\;\left( {A + A'} \right) + \frac{1}{2}\;\left( {A - A'} \right)\) where A + A’ is symmetric and A – A’ is skew-symmetric matrix.

By comparing \(A = \left[ {\begin{array}{*{20}{c}} { - \;1}&5&1\\ 2&3&4\\ 7&0&9 \end{array}} \right] = \frac{1}{2} \cdot (P + Q)\) with \(A = \frac{1}{2}\;\left( {A + A'} \right) + \frac{1}{2}\;\left( {A - A'} \right)\) we get,

⇒ P = A + A' and Q = A - A'

\(A = \left[ {\begin{array}{*{20}{c}} { - \;1}&5&1\\ 2&3&4\\ 7&0&9 \end{array}} \right]\;and\;A' = \left[ {\begin{array}{*{20}{c}} { - \;1}&2&7\\ 5&3&0\\ 1&4&9 \end{array}} \right]\)

⇒ \(P = \;\left[ {\begin{array}{*{20}{c}} { - \;1}&5&1\\ 2&3&4\\ 7&0&9 \end{array}} \right] + \;\left[ {\begin{array}{*{20}{c}} { - \;1}&2&7\\ 5&3&0\\ 1&4&9 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \;2}&7&8\\ 7&6&4\\ 8&4&{18} \end{array}} \right]\)

Similarly, \(Q = \;\left[ {\begin{array}{*{20}{c}} { - \;1}&5&1\\ 2&3&4\\ 7&0&9 \end{array}} \right] - \;\left[ {\begin{array}{*{20}{c}} { - \;1}&2&7\\ 5&3&0\\ 1&4&9 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&3&{ - \;6}\\ { - \;3}&0&4\\ 6&{ - \;4}&0 \end{array}} \right]\)

Hence, \(P = \;\left[ {\begin{array}{*{20}{c}} { - \;2}&7&8\\ 7&6&4\\ 8&4&{18} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&3&{ - \;6}\\ { - \;3}&0&4\\ 6&{ - \;4}&0 \end{array}} \right]\)

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Matrices Questions

Get Free Access Now
Hot Links: teen patti yas teen patti master 2025 teen patti 100 bonus online teen patti