Let  \(I = \mathop \oint \limits_C \left( {{x^2}y\;dy - {y^2}x\;dx} \right)\), where C is the boundary of square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Then I equals

This question was previously asked in
BPSC Lecturer ME Held on July 2016 (Advt. 35/2014)
View all BPSC Lecturer Papers >
  1. \( {1 \over 4}\)
  2. 4
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Detailed Solution

Download Solution PDF

Concept:

By using Greens theorem:

 \(\mathop \oint \limits_C^{} Mdx + Ndy\) = \(\;\mathop \int\!\!\!\int \limits_R^{} \left( {\frac{{∂ N}}{{∂ x}} - \frac{{∂ M}}{{∂ y}}} \right)dxdy\)

Calculation:

Given:

\(I = \mathop \oint \limits_C \left( {{x^2}y\;dy - {y^2}x\;dx} \right)\)

 where C is the boundary of square  0 ≤ x ≤ 1, 0 ≤ y ≤ 1

\(\mathop \oint \limits_C \left( {{x^2}y\;dy - {y^2}x\;dx} \right)\) = \(\;\mathop \int\!\!\!\int \limits_R^{} \left( {\frac{{∂ N}}{{∂ x}} - \frac{{∂ M}}{{∂ y}}} \right)dxdy\)

∂N/∂x = 2xy, ∂M/∂y = -2xy

using the values in the Greens theorem :

\(\;\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 \left( {2xy + 2xy} \right)dxdy\) = \( \smallint \limits_{x = 0}^1\smallint \limits_{y = 0}^1 \left( {4xy} \right)dxdy\)

 

\(\;\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 \left( {2xy + 2xy} \right)dxdy\) =\(\;4\mathop \smallint \limits_{x = 0}^1 x\left[ {\frac{{{y^2}}}{2}} \right]_0^1dx\)

=\(\;2\mathop \smallint \limits_{x = 0}^1 xdx\)

=\(\;2\left[ {\frac{{{x^2}}}{2}} \right]_0^1\)

1

Latest BPSC Lecturer Updates

Last updated on May 9, 2025

-> The BPSC Lecturere DV will be held on 28th May 2025.

-> The written exam took place on 20th March 2025.

-> BPSC Lecturer notification was released for 6 vacancies.

-> The BPSC recruits eligible candidates for the post of Lecturer for various disciplines in Government Colleges across the state.

-> Candidates must attempt the BPSC Lecturer EC Mock Tests. Candidates can also download and practice from the BPSC Lecturer previous year papers

More Calculus Questions

Get Free Access Now
Hot Links: teen patti real teen patti chart mpl teen patti teen patti gold online teen patti all