\(\rm \displaystyle\lim_{n \rightarrow \infty} \dfrac{1^2 + 2^2 + 3^2 + .....n^2}{n^3}\) is equal to

This question was previously asked in
UP TGT Mathematics 2021 Official Paper
View all UP TGT Papers >
  1. 0
  2. 1/3
  3. 2/3
  4. Does not exist

Answer (Detailed Solution Below)

Option 2 : 1/3
Free
UP TGT Hindi FT 1
9.8 K Users
125 Questions 500 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

\({1^2 + 2^2 + 3^2 + .....n^2} = \frac {n\ (n\ +\ 1)(2n\ +\ 1)}{6}\)

Calculation:

Given:

\(\rm \displaystyle\lim_{n \rightarrow \infty} \dfrac{1^2 + 2^2 + 3^2 + .....n^2}{n^3}\)

\(\rm \displaystyle\lim_{n \rightarrow \infty} \dfrac{n\ (n\ +\ 1)(2n\ +\ 1)}{6\ n^3}\)

\(\rm \displaystyle\lim_{n \rightarrow \infty} \dfrac{n\ (n\ +\ 1)(2n\ +\ 1)}{6\ n^3}\) 

\(\rm \displaystyle\lim_{n \rightarrow \infty} \dfrac{(n\ +\ 1)(2n\ +\ 1)}{6\ n^2}\)

\(\rm \displaystyle\lim_{n \rightarrow \infty} \dfrac{n^2(1\ +\ \frac {1}{n})(2\ +\ \frac {1}{n})}{6\ n^2}\) 

\( {\left (1\ +\ \frac {1}{\infty}\right ) \left (2\ +\ \frac {1}{\infty }\right )}\ \frac 1 6\)

\(\frac 1 3\)

Latest UP TGT Updates

Last updated on May 6, 2025

-> The UP TGT Exam for Advt. No. 01/2022 will be held on 21st & 22nd July 2025.

-> The UP TGT Notification (2022) was released for 3539 vacancies.

-> The UP TGT 2025 Notification is expected to be released soon. Over 38000 vacancies are expected to be announced for the recruitment of Teachers in Uttar Pradesh. 

-> Prepare for the exam using UP TGT Previous Year Papers.

More Calculus Questions

Get Free Access Now
Hot Links: teen patti palace teen patti flush teen patti dhani teen patti gold new version 2024 teen patti game