Let A be a 2 × 2 real matrix with detA = 1 and trace A = 3. What is the value of trace A2?

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. 2
  2. 10
  3. 9
  4. 7

Answer (Detailed Solution Below)

Option 4 : 7
Free
Seating Arrangement
3.3 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Calculation: 

Let a and b are two eigen values of A .

a + b = 3   . . . . .  . 1

ab = 1  . . . . .  . . 2

(a - b )2 = (a +b)2 - 4ab 

(a-b ) 2 = 5 

a - b = \(\sqrt{5}\)   . . . .  3 

now from equation 1 and 3 , we get 

a = \(\frac{3 + \sqrt{5}}{2}\)  and  b = \(\frac{3 - \sqrt{5}}{2}\) 

trace ( A) = a2 + b2 = 7 

Hence option (4) is correct

Alternate Method

Method -I Let λ1 and λ2 be two eigen values of A. 

Then det A = λ1 λ2 = 1

& Trace A = λ1 + λ2 = 3

And, Eigen values of A2 are λ12, λ22.

⇒ Trace (A2) = λ1+ λ22

Now, (λ1 + λ2)2 = λ1+ λ2+ 2λ1λ2

 (3)2 = λ12 + λ22 + 2

 λ1+ λ2= 9 - 2 = 7

Hence option (4) is correct

Method - II

ChA (x) = x2 - Trace (A) x + Det (A) = 0 

 x2 - 3x + 1 = 0  \(x=\frac{3 \pm \sqrt{9-4}}{2}\)

\(\Rightarrow λ_1=\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}=\) λ2 which are eigenvalues of A .

then eigenvalues of A2 are,

\(λ_1{ }^2=\left(\frac{3+\sqrt{5}}{2}\right)^2 =\frac{9+5+6 \sqrt{5}}{4}=\frac{14+6 \sqrt{5}}{4}\)

\(+\lambda_2^2=\left(\frac{3-\sqrt{5}}{2}\right)^2=\frac{9+5-6 \sqrt{5}}{4}=\frac{14-6 \sqrt{5}}{4}\)

Then trace \(\left(A^2\right)=\lambda_1^2+\lambda_2^2=\frac{14+6 \sqrt{5}}{4}+\frac{14-6 \sqrt{5}}{4}=\frac{28}{4}\) = 7

Hence option (4) is correct

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Linear Algebra Questions

Get Free Access Now
Hot Links: teen patti flush teen patti master 2023 teen patti master game teen patti master gold teen patti master plus