Let an input π‘₯[𝑛] having discrete time Fourier transform

𝑋(𝑒𝑗𝛺) = 1 − 𝑒−𝑗𝛺 + 2𝑒−3𝑗𝛺 be passed through an LTI system. The frequency response of the LTI system is \(\rm H(e^{j\Omega)}=1-\frac{1}{2}e^{-j2\Omega}\). The output 𝑦[𝑛] of the system is

This question was previously asked in
GATE EC 2023 Official Paper
View all GATE EC Papers >
  1. \(\rm \delta[n]+\delta[n-1]-\frac{1}{2}\delta[n-2]-\frac{5}{2}\delta[n-3]+\delta[n-5]\)
  2. \(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]-\frac{5}{2}\delta[n-3]+\delta[n-5]\)
  3. \(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]-\delta[n-5]\)
  4. \(\rm \delta[n]+\delta[n-1]+\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]+\delta[n-5]\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]-\delta[n-5]\)
Free
GATE EC 2023: Full Mock Test
3.3 K Users
65 Questions 100 Marks 180 Mins

Detailed Solution

Download Solution PDF

The correct option is 3

Given:  𝑦[𝑛]  = x[n] ∗ h[n] 

We know that the convolution in one domain results in convolution in another domain.

Y(𝑒𝑗𝛺) =𝑋(𝑒𝑗𝛺) H(𝑒𝑗𝛺

= (1 − 𝑒−𝑗𝛺 + 2𝑒−3𝑗𝛺)(\(1-\frac{1}{2}e^{-j2\Omega}\))

=1 - π‘’−𝑗𝛺 + 2.5𝑒−3𝑗𝛺 - 0.5𝑒−2𝑗𝛺 - π‘’−5𝑗𝛺

Taking IDFT we have:

y[n] =\(\rm \delta[n]-\delta[n-1]-\frac{1}{2}\delta[n-2]+\frac{5}{2}\delta[n-3]-\delta[n-5]\)

Latest GATE EC Updates

Last updated on Jan 8, 2025

-> The GATE EC Call Letter has been released on 7th January 2025.

-> The GATE EC 2025 Exam will be held on 15th February 2025.

-> The mode of the GATE EC exam will be a Computer-Based test of 100 marks. 

-> Candidates preparing for the exam can refer to the GATE EC Previous Year Papers to improve their preparation and increase the chances of selection. 

-> Candidates must attempt the GATE EC Mock tests

More Discrete Time Fourier Transform (DTFT) Questions

Get Free Access Now
Hot Links: teen patti refer earn teen patti gold new version teen patti star login teen patti online game teen patti gold new version 2024