Step Up Choppers MCQ Quiz in বাংলা - Objective Question with Answer for Step Up Choppers - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 22, 2025

পাওয়া Step Up Choppers उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Step Up Choppers MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Step Up Choppers MCQ Objective Questions

Top Step Up Choppers MCQ Objective Questions

Step Up Choppers Question 1:

A boost converter has an L = 10 μH, output voltage = 60 V and switching frequency, fs = 100 kHz. Calculate the value for minimum load current (in A) such that the converter is always operated in continuous inductor conduction mode for all conditions.

Answer (Detailed Solution Below) 4.4 - 4.5

Step Up Choppers Question 1 Detailed Solution

In a boost converter, for continuous conduction mode

\(K > \frac{{2fL}}{R}\)

K > (1 – D)2D

For the minimum value of K,

\(\frac{d}{{dt}}\left[ {{{\left( {1 - D} \right)}^2}D} \right] = 0\)

\( \Rightarrow D = \frac{1}{3}\)

The minimum value of K is \( = {\left( {1 - \frac{1}{3}} \right)^2} \times \frac{1}{3} = 0.148\)

Given that, f = 100 kHz

Inductance, L = 10 μH

\(K > \frac{{2fL}}{R}\)

\( \Rightarrow 0.148 > \frac{{2 \times 100 \times {{10}^3} \times 10 \times {{10}^{ - 6}}}}{R}\)

⇒ R > 13.51 Ω

Minimum load current \({I_0} = \frac{{{V_o}}}{R} = \frac{{60}}{{13.51}} = 4.44\;A\)

Step Up Choppers Question 2:

A boost converter with an input voltage of 5 V dc and an output voltage of 10 V dc will have a duty cycle of

  1. 1 / 3
  2. 1 / 2
  3. 2 / 3
  4. 3 / 4

Answer (Detailed Solution Below)

Option 2 : 1 / 2

Step Up Choppers Question 2 Detailed Solution

Concept:

The circuit diagram of a boost converter is shown below.

F1 U.B Deepak 24.10.2019 D 10

Step Up or Boost converter is used to obtain the output voltage greater than the input voltage.

The relation between the output voltage and the input voltage is given by

\(Vo=\frac{{{V}_{s}}}{1-D}\)

Where D is the duty cycle of the chopper

Calculation:

Input voltage (VS) = 5 V

Average output voltage (Vo) = 10 V

\(10 = \frac{5}{{1 - D}}\)

\( \Rightarrow D = \frac{1}{2}\)

Step Up Choppers Question 3:

A buck converter has an output voltage of 10 V for an input voltage of 25 V. it has a peak to peak output voltage ripple requirement of 15 mV. The switching frequency is 25 kHz and the peak to peak ripple current of the inductor is limited to 0.5 A.

Which of the following is/are true?

  1. The value of the filter inductance is 240 μH
  2. The value of the filter capacitance is 333.3 μH
  3. The value of the filter inductance is 480 μH
  4. The value of the filter is capacitance is 166.67 μF

Answer (Detailed Solution Below)

Option :

Step Up Choppers Question 3 Detailed Solution

Given that, input voltage (Vs) = 25 V

Output voltage (Vo) = 10 V

Duty cycle (D) \(= \frac{{{V_o}}}{{{V_s}}} = \frac{{10}}{{25}} = 0.4\)

Switching frequency (f) = 25 kHz

Peak to peak ripple current (ΔI) = 0.5 A

Peak to peak ripple voltage (ΔV) = 15 mV

\({\rm{\Delta }}I = \frac{{{V_o}\left( {{V_s} - {V_o}} \right)}}{{fL{V_s}}}\)

\( \Rightarrow 0.5\; = \frac{{10\;\left( {25 - 10} \right)}}{{25\; \times \;{{10}^3}\; \times \;L \;\times\; 25\;}}\)

⇒ L = 480 μH

\({\rm{\Delta }}{V_o} = \frac{{{V_o}\left( {1 - D} \right)}}{{8LC{f^2}}}\)

\( \Rightarrow 15 \times {10^{ - 3}} = \frac{{10\;\left( {1 - 0.4} \right)}}{{8\; \times \;480\; \times\; {{10}^{ - 6}}\; \times \;C \;\times\; {{\left( {25 \;\times\; {{10}^3}} \right)}^2}}}\)

⇒ C = 166.67 μF

Step Up Choppers Question 4:

The chopper circuit shown in figure (i) feeds power to a 5 A DC constant current source. The switching frequency of the chopper is 100 kHz. All the components can be assumed to be ideal. The gate signals of switches S1 and S2 are shown in figure (ii). Average voltage across the 5 A current source is 

F1 Savita ENG 16-11-23 D80

  1. 10 V
  2. 6 V
  3. 12 V
  4. 20 V

Answer (Detailed Solution Below)

Option 2 : 6 V

Step Up Choppers Question 4 Detailed Solution

 

F1 Savita ENG 16-11-23 D81

when switch S1 ON → ν0 = νs = 20V

D2 ON → ν0 = 0 volt

S2 ON → ν0 = 0 volt (no energy stored)

F1 Savita ENG 16-11-23 D82

\(V_{0(\text { ang })}=\frac{20 \times 3}{10}=6 \mathrm{Volt}\)

Hence, the correct option is (B).

Step Up Choppers Question 5:

In the following circuit of buck - boost regulator:

F1 S.B Madhu 13.02.20 D3

Input voltage = 12V, duty cycle = 0.25 and switching frequency = 25 kHz, L = 125 μH and C = 220 μF. The average load current = 1.25A.

Following statements are given:

(a) Average output voltage = 4.8 V

(b) Peak to peak output ripple voltage = 5.68 V

(c) Average output voltage = − 4 V

(d) Peak to peak output ripple voltage = 56.8 mV

Which one is the correct option:

  1. (a) and (b)
  2. (b) and (c)
  3. (c) and (d)
  4. (a) and (d)

Answer (Detailed Solution Below)

Option 3 : (c) and (d)

Step Up Choppers Question 5 Detailed Solution

Concept:

Buck-Boost Regulator:

  • It provides negative polarity output with respect to common terminal of the input voltage & the output voltage can be either higher or lower than the input voltage.
  • It can be obtained from the cascading of a step-down converter & step-up converter.
  • The ratio of output to input voltage can be expressed as:
     

\(\frac{{{V_o}}}{{{V_{in}}}} = - \left( {\frac{\alpha }{{1 - \alpha }}} \right)\)

α = Duty cycle

Also, the output voltage ripple is given by:

\({\rm{\Delta }}{V_o} = \frac{{\alpha {I_o}}}{{Cf}}\)

α = Duty cycle

C = Capacitor

f = Switching frequency

Io = Average ouput current

Calculations:

Given Vi = 12 V

Duty Cycle = 0.25

Switching frequency (f) = 25 kHz

L = 125 μH and C = 220 μF

The average output voltage will be:

\({V_o} = - \left( {\frac{\alpha }{{1 - \alpha }}} \right){V_i} = \frac{{ - \left( {0.25} \right)}}{{\left( {0.75} \right)}}\left( {12} \right)\;V\)    

V0 = - 4 V

Similarly, the output voltage ripple ΔVo is given by:

\({\rm{\Delta }}{V_o} = \frac{{\alpha {I_o}}}{{Cf}} = \frac{{0.25\; \times \;1.25}}{{220\; \times \;{{10}^{ - 6}}\; \times \;25\; \times \;{{10}^{ + 3}}}} = + \;56.8\;mV\)   

Step Up Choppers Question 6:

In a boost chopper circuit if Vs, V0, L are input voltage, output voltage and inductance, respectively, and when the conducting switch is opened, the rate of change of inductive current is

  1. \(\frac{{{V_s}}}{L}\)
  2. \(\frac{{{V_0}}}{L}\)
  3. \(\frac{{{V_s} - {V_0}}}{L}\)
  4. \(\frac{{{V_s} + {V_0}}}{L}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{{V_s} - {V_0}}}{L}\)

Step Up Choppers Question 6 Detailed Solution

Voltage equation across inductance is given by

\({v_L} = L\frac{{dI}}{{dt}}\)

Calculation:

Circuit diagram for the boost chopper and its equivalent circuit with conducting switch open are shown below.

F2 U.B Deepak 26.10.2019 D5

F2 U.B Deepak 26.10.2019 D6

Applying KVL in the above circuit

Vs – VL – V0 = 0

⇒ Vs – V0 = VL

Rate of change of inductive current  is 

\({V_L} = L\frac{{d{I_L}}}{{dt}}\)

\({V_s} - {V_0} = L\frac{{d{I_L}}}{{dt}}\)

\(\frac{{d{I_L}}}{{dt}} = \frac{{{V_s} - {V_0}}}{L}\)

Step Up Choppers Question 7:

A step-up chopper shown in figure is to deliver 3A

GATE FT 2020 31 May Aman Nita images Q4

In to the 10 Ω load. The battery voltage is 12 V, L = 20 μH, C = 100 μF and chopper frequency is 50 kHz. Determine the battery current variation in ampere

Answer (Detailed Solution Below) 7.1 - 7.3

Step Up Choppers Question 7 Detailed Solution

Calculation:

Vo = IoRL = 3 × 10 = 30 V

Vb = Vo (1 – D)

\(1 - D = \frac{{12}}{{30}} = 0.4\)

D = 0.6

Periodic time \(T = \frac{1}{f} = \frac{1}{{50 \times {{10}^3}}} = 20\;\mu s\)

On time = DT = 0.6 × 20 × 10-6 = 12 μs 

over an on-time the change in battery current will be

\({\rm{\Delta }}i = \frac{{{V_L}}}{L} \times Ton\)

\({\rm{\Delta }}i = \frac{{12}}{{20 \times {{10}^{ - 6}}}} \times 20 \times {10^{ - 6}} = 7.2\;A\)

Concept:

GATE FT 2020 31 May Aman Nita images Q4a

When the transistor is switched on, current ramps up in the inductor and energy is stored.

When the transistor is switched off, the inductor voltage reverses and acts together with the battery voltage to forward bias the diode, transferring energy to the capacitor.

When the transistor is switched on again, load current is maintained by the capacitor, energy is stored in the inductor and the cycle can start again.

The value of the load voltage is increased by increasing the duty cycle or the on-time of the transistor.

During the transistor on-period, assuming an ideal inductor and transistor

Vb = VL = Ldi/dt

Vb/s = (sL) i(s)

i(s) = Vb/s2L

i(t) = (Vb/L)t = kt

Over an on-time of TON, the change of battery current will be

Δi = k TON

During the off-period

Vo = Vb + VL = Vb + L(di/dt) = Vb + L(Δi/Δt)

= Vb + L(Vb/L)TON /Toff = Vb(1 + TON /Toff)

Let the duty cycle

D = TON T, and Toff = T – TON = T(1 - D). Now

Vo = Vb (1 – DT/T(1 – D))

which simplifies to

Vo = Vb/(1 - D)

In an ideal circuit, VbIb = V0I0. Therefore, from eq.

Ib = (Vo/Vb)Ib = Io/(1 – D)

Ib = Ib + Δi/2

Ibo = Ib – Δi/2

When the steady variation of battery current has been reached, the variation will be between lo and I1, as shown in.

GATE FT 2020 31 May Aman Nita images Q4b

Step Up Choppers Question 8:

A DC-DC boost converter, as shown in the figure below, is used to boost \(360V\) to \(400\;V\), at a power of \(4\;kW\). All devices are ideal. Considering continuous inductor current, the rms current in the solid state switch (S), in ampere, is _________.

Gate EE 2016 paper 2 Images-Q47

Answer (Detailed Solution Below) 3 - 4

Step Up Choppers Question 8 Detailed Solution

Concept:

In a boost converter, the output voltage is given by,

\(\frac{V_0}{V_s}=\frac{1}{1−D}\)

Calculation:

Input dc voltage (Vs) = 360 V

Output voltage (V0) = 400 V



⇒ 400 - 400 D = 360

⇒ 400 D = 40

D = 0.1

Output power = VsIs = 400 × I0 = 4 kW

⇒ I0 = 10 A

From the power balance equation, input power is equal to output power.

VsIs = VoIo

or, 360 Is = 4000

Is = 11.1  A

Neglecting ripple in Is

IRMS = \(I_s \times \sqrt{D}=11.1\times \sqrt{0.1}\approx3.5\ A\)

Step Up Choppers Question 9:

The minimum inductance (Lmin) for continuous current for a boost converter is given by (where D is duty ratio):

  1. Lmin = \(\rm\frac{D(1−D)^2 R}{2 f}\)
  2. Lmin = \(\rm\frac{D(1+D)^2 R}{2f}\)
  3. Lmin = \(\rm\frac{D(1−D) R}{2 f}\)
  4. Lmin = \(\rm\frac{D(1+D) R}{2 f}\)

Answer (Detailed Solution Below)

Option 1 : Lmin = \(\rm\frac{D(1−D)^2 R}{2 f}\)

Step Up Choppers Question 9 Detailed Solution

Concept

F1 Engineering Mrunal 13.03.2023 D41

At the edge of the continuous conduction, the value of inductance becomes minimum and such value of inductance is known as the critical inductance of the converter.

At the boundary of continuous conduction, IL(min) = 0

\(I_L{(min)}=I_{L(avg)}-{Δ I_L\over 2}\)

\(0=I_{L(avg)}-{Δ I_L\over 2}\)

\(I_{L(avg)}={Δ I_L\over 2}\)                ..........(i)

Calculation of ΔIL

When the switch is ON:

\(-V_s+V_L=0\)

\(V_s=V_L\)

\(L{di_L\over dt}=V_s\)

\(\Delta I_L={V_sD\over Lf}\)

Putting this value in equation (i):

\(I_{L(avg)}={V_sD\over 2Lf}\)

For the boost converter,  \(I_{L(avg)}={I_{o(avg)}\over 1-D}\)

\({I_{o(avg)}\over 1-D}={V_sD\over 2Lf}\)

\({V_{o(avg)}\over R(1-D)}={V_sD\over 2Lf}\)

For the boost converter,  \(V_{o(avg)}={V_{s}\over 1-D}\)

\({V_{s}\over R(1-D)^2}={V_sD\over 2Lf}\)

The value of the minimum inductance (Lmin) for continuous current for a boost converter is given by:

Lmin = \(\rm\frac{D(1−D)^2 R}{2 f}\)

Step Up Choppers Question 10:

Consider a buck converter with the controlled switch as MOSFET and the uncontrolled switch as diode, the input to the buck converter is 60 V. The MOSFET is turned on for 20 μ sec and turned off for 10 μ sec periodically. Assuming ideal components, the output voltage of the buck converter is

  1. 20 V
  2. 30 V
  3. 40 V
  4. 50 V

Answer (Detailed Solution Below)

Option 3 : 40 V

Step Up Choppers Question 10 Detailed Solution

Concept

Buck converter:

F1 Vinanti Engineering 22.12.22 D7

The output voltage of the buck converter is given as follows:

Vo = D Vin

Calculation:

V0 = DVs

\(\rm D=\frac{T_0w}{T_0w+T_{df}}\)

\(\rm D =\frac{20}{20+10}=\frac{20}{30}=0.666\)

V0 ⇒ 0.66 × 60

V0 ⇒ 40 V

output voltage ⇒ 40 V.A

Get Free Access Now
Hot Links: teen patti bodhi teen patti real cash apk online teen patti teen patti apk download