Wave Speed on a Stretched String MCQ Quiz in বাংলা - Objective Question with Answer for Wave Speed on a Stretched String - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 15, 2025

পাওয়া Wave Speed on a Stretched String उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Wave Speed on a Stretched String MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Wave Speed on a Stretched String MCQ Objective Questions

Top Wave Speed on a Stretched String MCQ Objective Questions

Wave Speed on a Stretched String Question 1:

The wave velocity in a guitar string of length l and radius r, made of a material of density ρ, is v. If another string of same length and radius, but made of a material of density 3ρ, is used, the wave velocity is nv, under the same tension. The value of n is

  1. 0.58
  2. 1.00
  3. 1.73
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 0.58

Wave Speed on a Stretched String Question 1 Detailed Solution

CONCEPT:

The wave velocity of a string under Tension T and mass per unit length μ 

⇒ v = \(\sqrt{\frac{T}{μ} } \)

EXPLANATION:

For the first string,

Length = l, radius = r, density = ρ 

The volume of the wire = πr2L

∴ density = mass/volume

⇒ volume = mass/density = m1/ρ 

So, we have, πr2L = m1/ρ 

⇒ m1/L = πr2ρ = mass per unit length = μ 

So, velocity v = \(\sqrt{\frac{T}{\pi r^2\rho} } \) ---- (1)

Similarly for the second material of mass m2 

⇒ m2/L = πr2(3ρ) ​ 

So, velocity v' = nv = \(\sqrt{\frac{T}{\pi r^ 2 3\rho} } = \frac{1}{\sqrt{3}} v = 0.58 v\) 

∴ n = 0.58

Hence the correct answer is option 1.

Wave Speed on a Stretched String Question 2:

If n1, n2  and n3  are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency 'n' of the string is given by following :

  1. n = n1 + n2 + n3
  2. \( \rm\frac{1}{n}=\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3}\)
  3. \(\rm\sqrt{n} = \sqrt{n_1} +\sqrt{n_2} + \sqrt{n_3} \)
  4. \(\rm \frac{1}{\sqrt{n}}=\rm \frac{1}{\sqrt{n_1}}+\rm \frac{1}{\sqrt{n_2}}+ \rm \frac{1}{\sqrt{n_3}}\)
  5. None of the above/More than one of the above.

Answer (Detailed Solution Below)

Option 2 : \( \rm\frac{1}{n}=\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3}\)

Wave Speed on a Stretched String Question 2 Detailed Solution

Concept:

Fundamental frequency:

The lowest frequency of any vibrating object is called a fundamental frequency.

The fundamental frequency of a string is given by

\(n = \frac{1}{{2l}}\;\sqrt {\frac{T}{m}}\;\)

Where l = length of the string, T = tension on the string and m =  linear mass density

Calculation:

Given:

The fundamental frequency of a string (l) is given by:

\(⇒ n = \frac{1}{{2l}}\;\sqrt {\frac{T}{m}} \)

As T and m is constant

\(\therefore n\propto \frac {1}{l}\)

⇒ n1l1 = n2l2 = n3l3 = k        [Where k = constant]

\(⇒ l_1=\frac{k}{n_1},\,\,\, l_2=\frac{k}{n_2},\,\,\, l_3=\frac{k}{n_3}\)

The original length of the string is

\(\Rightarrow l=\frac{k}{n}\)

The total length of the string is 

⇒ l = l+ l+ l3

Substitute the value of l, l1, l2, and l3 in the above equation, we get

\(\Rightarrow \frac{k}{n} = \frac{k}{n_1}+\frac{k}{n_2}+\frac{k}{n_3}\)

\(\Rightarrow \frac{1}{n}=\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3}\)

Wave Speed on a Stretched String Question 3:

The wave velocity in a guitar string of length l and radius r, made of a material of density ρ, is v. If another string of same length and radius, but made of a material of density 3ρ, is used, the wave velocity is nv, under the same tension. The value of n is

  1. 0.58
  2. 1.00
  3. 1.73
  4. 3.00

Answer (Detailed Solution Below)

Option 1 : 0.58

Wave Speed on a Stretched String Question 3 Detailed Solution

CONCEPT:

The wave velocity of a string under Tension T and mass per unit length μ 

⇒ v = \(\sqrt{\frac{T}{μ} } \)

EXPLANATION:

For the first string,

Length = l, radius = r, density = ρ 

The volume of the wire = πr2L

∴ density = mass/volume

⇒ volume = mass/density = m1/ρ 

So, we have, πr2L = m1/ρ 

⇒ m1/L = πr2ρ = mass per unit length = μ 

So, velocity v = \(\sqrt{\frac{T}{\pi r^2\rho} } \) ---- (1)

Similarly for the second material of mass m2 

⇒ m2/L = πr2(3ρ) ​ 

So, velocity v' = nv = \(\sqrt{\frac{T}{\pi r^ 2 3\rho} } = \frac{1}{\sqrt{3}} v = 0.58 v\) 

∴ n = 0.58

Hence the correct answer is option 1.

Wave Speed on a Stretched String Question 4:

A transverse wave travels on a taut steel wire with a velocity of v when tension in it is 2.06 × 104 N. When the tension is changed to T, the velocity changed to v/2. The value of T is close to :

  1. 2.50 × 104 N
  2. 5.15 × 103 N
  3. 30.5 × 104 N
  4. 10.2 × 102 N

Answer (Detailed Solution Below)

Option 2 : 5.15 × 103 N

Wave Speed on a Stretched String Question 4 Detailed Solution

CONCEPT:

For a transverse wave the velocity of the transverse wave 

\(⇒v = \sqrt{\frac{T}{μ}} \)

Where, T = tension and μ = mass per unit length

∴ T = μ v2

EXPLANATION:

We know the relation between T and v

⇒ T ∝ v2

(Where μ is a constant)

⇒ T1/T2 = (v1/v2)2

∴ T2 = T1/(v1/v2)2

Given,

v1 = v and v2 = v/2

⇒v1/v2 = 2

⇒T1 = 2.06 × 104 N

∴ T2 = T1/(v1/v2)2

= (2.06 × 104)/(2)2 = (2.06/4) × 104 = 5.15 × 103 N

Hence the correct answer is option 2.

Wave Speed on a Stretched String Question 5:

A transverse wave described by y = (0.02 m) sin[x + 30t] propagates on a stretched string having a linear mass density of 1.2 × 10-4 kg/m. The tension in the string is

  1. 0.059 N
  2. 0.108 N
  3. 0.177 N
  4. 0.216 N

Answer (Detailed Solution Below)

Option 2 : 0.108 N

Wave Speed on a Stretched String Question 5 Detailed Solution

Concept:

The linear velocity of a wave traveling in a stretched string is given by the equation:

\(v=\sqrt{\frac{T}{m/L}}\)

Where T is the tension in the stretched string, m is the mass of the string and L is the length of the string.

The general equation of a wave is y = A sin(ωt + kx + ϕ)

Where y is the displacement of the wave at time t, A is the amplitude, ϕ is the phase and k is the angular wavenumber.

Calculation:

Given:

m/L = 1.2 × 10-4 kg/m

y = (0.02 m) sin[x + 30t]

Comparing the general wave equation

The general equation of a wave is y = A sin(ωt + kx + ϕ)

A = 0.02 m, ω = 30 rad/s, k = 1.

Linear velocity:

\(v=\frac{\omega}{k} =\frac {30}{1}=30\;m/s\)

\(v=\sqrt{\frac{T}{m/L}}\)

\(30=\sqrt{\frac{T}{1.2×10^{-4}}}\)

T = 30 × 30 × 1.2 × 10-4 = 0.108 N

Wave Speed on a Stretched String Question 6:

Consider a gas with molar mass M. If the sound at frequency f is introduced to a tube of this gas temperature T then an internal acoustic standing wave is set up with nodes separated by L. The adiabatic constant (γ = Cp/Cv) is 

  1. \(\frac{{M\,{f^2}{L^2}}}{{RT}}\)
  2. \(\frac{{M\,{f^2}{L^2}}}{{4RT}}\)
  3. \(\frac{{4M\,{f^2}{L^2}}}{{RT}}\)
  4. \(\frac{{3M\,{f^2}{L^2}}}{{2RT}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{4M\,{f^2}{L^2}}}{{RT}}\)

Wave Speed on a Stretched String Question 6 Detailed Solution

Concept:

  • The frequency of oscillation is defined as the number of oscillations in one second.
  • The distance between two nodes in terms of the wavelength λ the string is \(L=\frac{λ}{2}\)
  • The relation between the speed of the wave v, frequency f and wavelength λ is given by, v=f λ 
  • The speed of the wave in string in terms of adiabatic constant,  \(v=\sqrt{\frac{\gamma RT}{M}} \)

Explanation:

Let's consider a gas with a molar mass M, f is the frequency of a sound and T is the temperature. 

The distance between two nodes is \(L=\frac{λ}{2}\)

So,  λ =2L

The speed of the wave is, \(v=\sqrt{\frac{\gamma RT}{M}}\)

\(fλ=2fL=\sqrt{\frac{\gamma RT}{M}}\)

\(4f^2L^2=\frac{\gamma RT}{M}\)

\(\gamma=\frac{4f^2L^2M}{RT}\)

 

Additional Information

  • Isothermal expansion: A process in which temperature remains constant. For such a process, PV = constant
  • Isobaric process: A process in which pressure remains constant. For this process, VT=constant" id="MathJax-Element-13-Frame" role="presentation" style="display: inline; position: relative;" tabindex="0">PT=constant" role="presentation" style="display: inline; position: relative;" tabindex="0">
  • PT=constant" role="presentation" style="display: inline; position: relative;" tabindex="0">PT=constant" role="presentation" style="display: inline; position: relative;" tabindex="0">PT=constant" role="presentation" style="display: inline; position: relative;" tabindex="0">

Wave Speed on a Stretched String Question 7:

Two identical nylon strings are held stretched and it was noted that the fundamental frequency of the strings is in the ratio 1 : 2. Then the ratio of tension in both the string is:

  1. 1 : 2
  2. 2 : 1
  3. 1 : √2
  4. 1 : 4

Answer (Detailed Solution Below)

Option 4 : 1 : 4

Wave Speed on a Stretched String Question 7 Detailed Solution

The correct answer is option 4) i.e. 1 : 4 

CONCEPT:

  • The fundamental frequency of a stretched string is given by the equation:

\(\nu =\frac{1}{2L} \sqrt {\frac{T}{μ}}\)

Where L is the length of the vibrating part of the string, T is the tension and μ is the linear density of the string.

EXPLANATION:

Given that:

The ratio of frequencies is v1 : v2 = 1 : 2

Since the wires are identical, they will have the same L and μ.  

The fundamental frequency, ν ∝ √T

Ratio, ν1 : ν2 = √T1 : √T2

⇒ν12 : ν22 = T1 : T2

12 : 22 = 1 : 4

Wave Speed on a Stretched String Question 8:

1A string of 7 metre length has a mass of 0.035 kg. If tension in the string is 60.5 N, then speed of a wave on the string is 

  1. 77 metre/sec
  2. 102 metre/sec
  3. 165 metre/sec
  4. 110 metre/sec

Answer (Detailed Solution Below)

Option 4 : 110 metre/sec

Wave Speed on a Stretched String Question 8 Detailed Solution

Concept:

  • Transverse wave: The wave generated such that the particles oscillate in the direction perpendicular to the propagation of the wave is called the transverse wave. 
    • The transverse wave can be observed when we pull a tight string a bit

F1 J.K 23.7.20 Pallavi D3

  • The Speed of Such Transverse wave is given as:

 \(v = \sqrt{\frac{T}{\mu}}\)v=Tμ" id="MathJax-Element-1-Frame" role="presentation" style="display: inline; position: relative;" tabindex="0">v=Tμ

Where T is Tension in the tight String and μ is mass per unit length of the string. 

Calculation:

Given length of string = 7m

Mass of string = 0.35 kg

Tension in string = 60.5 N

Mass per unit length 

\(μ = \frac{0.35kg}{7m}\)

⇒ μ = 0.05

Speed of wave

\(v = \sqrt{\frac{T}{\mu}}\)

\(v = \sqrt{\frac{60.5}{0.05}}\)

Wave Speed on a Stretched String Question 9:

A string vibrates with a frequency of 200 Hz. When its length is doubled and tension is altered, it begins to vibrate with a frequency of 300 Hz. The ratio of the new tension to the original tension is

  1. 9 : 1
  2. 1 : 9
  3. 3 : 1
  4. 1 : 3

Answer (Detailed Solution Below)

Option 1 : 9 : 1

Wave Speed on a Stretched String Question 9 Detailed Solution

CONCEPT:

The frequency of oscillation of a string stretched under tension T is given by 

\(f =\frac{1}{2l}\sqrt{\frac{T}{μ}}{}\)

Where f = frequency of oscillation, n = number of loops, l = Length of string, T =Tension, and μ= linear density

CALCULATION:

Given - f1 = 200 Hz, f2 = 300 Hz, L1 = l and L2 = 2l

  • The frequency of oscillation is given by

\(\Rightarrow f =\frac{1}{2l}\sqrt{\frac{T}{μ}}\)

Where T = Tension and μ = mass

From the above equation it is clear that

\(\Rightarrow f \propto \frac{\sqrt{T}}{L}\)

For the two vibrating strings, the above equation is given by

\(\Rightarrow f _{1}\propto \frac{\sqrt{T_{1}}}{L_{1}}\)​    ------ (1)

\(\Rightarrow f_{2} \propto \frac{\sqrt{T_{2}}}{L_{2}}\)    ------ (2)

On dividing equation 1 and 2, we get

\(\Rightarrow \frac{f_{2}}{f_{1}} =\sqrt{\frac{T_{2}}{T_{1}}} \frac{L_{2}}{L_{1}}\)

Squaring both sides of the above equation and it can be rewritten for \(\frac{T_{2}}{T_{1}}\)

\(\Rightarrow \frac{T_{2}}{T_{1}} =\frac{(f_{2}L_{2})^{2}}{(f_{1}L_{1})^{2}}\)

Substituting the given values of f1 and f2 and L2 = 2l

\(\Rightarrow \frac{T_{2}}{T_{1}} =\frac{(300\times 2L_{1})^{2}}{(200\times L_{1})^{2}}\)

\(\Rightarrow \frac{T_{2}}{T_{1}} =\frac{9}{1}\)

  • Hence, option 1  is the answer

Wave Speed on a Stretched String Question 10:

A wire under tension vibrates with a fundamental frequency of 600 Hz. If the length of the wire is doubled, the radius is halved and the wire is made to vibrate under one-ninth the tension. Then the fundamental frequency will become ______

  1. 200 Hz
  2. 300 Hz
  3. 600 Hz
  4. 400 Hz

Answer (Detailed Solution Below)

Option 1 : 200 Hz

Wave Speed on a Stretched String Question 10 Detailed Solution

CONCEPT:

  • Fundamental frequency: It is the lowest frequency of a periodic waveform. It is also known as natural frequency.

F1 J.K 24.8.20 pallavi D3

The fundamental frequency of a wire:

\(f =\frac{1}{2l} . \sqrt{T\over μ}\)

where f is the fundamental frequency, l is the length of the wire, T is the tension in the wire, and μ is the mass per unit length.

\(f =\frac{1}{2l} . \sqrt{T\over μ}\)

\(f =\frac{1}{2l} . \sqrt{T\over π r^2 ρ}\)

\(f =\frac{1}{2lr} . \sqrt{T\over π ρ}\)

CALCULATION:

Given that length is doubled and the radius is halved and tension has been one-ninth.

T' = T/9; l' = 2l; r' = 2r; initial frequency f = 600 Hz

Fundamental frequency:

\(f =\frac{1}{2lr} . \sqrt{T\over π ρ}\)

in this formula π and ρ are constant.

\({f'\over f} =\frac{l'r'}{lr} . \sqrt{T'\over T}\)

\({f'\over f} =\frac{(l/2)(2r)}{lr} . \sqrt{T/9\over T}\)

\({f'\over f} ={1 \over 3}\)

f'/600 = 1/3

\(f' = 600/3 = 200 Hz\)

So the correct answer is option 1.

Get Free Access Now
Hot Links: teen patti teen patti master gold apk teen patti yas teen patti live