Mathematical Methods of Physics MCQ Quiz - Objective Question with Answer for Mathematical Methods of Physics - Download Free PDF

Last updated on Apr 28, 2025

Latest Mathematical Methods of Physics MCQ Objective Questions

Mathematical Methods of Physics Question 1:

If x = √-1, what is the value of x2x = ?

  1. \(\rm e^{\frac{\pi}{2}}\)
  2. eπ 
  3. e-π/2
  4. e

Answer (Detailed Solution Below)

Option 4 : e

Mathematical Methods of Physics Question 1 Detailed Solution

Concept:

  • Euler's formula states that e = cosθ + i sinθ.
  • The natural logarithm of i is given by: ln(i) = iπ/2.
  • Using exponentiation properties, x can be evaluated.

 

Calculation:

x = √-1 = i

⇒ x² = (i)² = -1

⇒ x = i-1 = 1/i

⇒ Since i = eiπ/2, we write:

1/i = e-iπ/2

⇒ e-iπ/2 = e-πi

⇒ e

∴ The value of x is e.

Mathematical Methods of Physics Question 2:

\(\rm \left(\frac{1+i}{\sqrt2}\right)^{49}\) is equal to

  1. \(\rm \left(\frac{1+i}{\sqrt2}\right)\)
  2. \(\rm \left(\frac{2+98i}{\sqrt{2^{49}}}\right)\)
  3. \(\rm \left(\frac{1-i}{\sqrt2}\right)\)
  4. \(\rm \left(\frac{2-98i}{\sqrt{2^{49}}}\right)\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \left(\frac{1+i}{\sqrt2}\right)\)

Mathematical Methods of Physics Question 2 Detailed Solution

Concept:

  • We express the given complex number in polar form.
  • Using De Moivre's Theorem: (r e^(iθ))ⁿ = rⁿ e^(i nθ).

 

Calculation:

((1 + i) / √2)⁴

The given complex number is:

z = (1 + i) / √2

⇒ Convert to polar form:

Magnitude: |z| = √(1² + 1²) / √2 = √2 / √2 = 1

Argument: θ = tan⁻¹(1/1) = π/4

⇒ So, z = e^(iπ/4)

Now, raising to the fourth power:

z⁴ = (e^(iπ/4))⁴

⇒ e^(iπ) = -1

Hence, z⁴ = (1 + i) / √2

∴ The value is (1 + i) / √2.

Mathematical Methods of Physics Question 3:

Are the three points whose position vectors are 2i + 3j - 4k, i - 2j + 3k and -7j + 10k collinear?

  1. Yes
  2. No
  3. Cannot be determined
  4. None of these

Answer (Detailed Solution Below)

Option 1 : Yes

Mathematical Methods of Physics Question 3 Detailed Solution

Concept:

  • Three points are collinear if vectors AB and BC are parallel.
  • To check collinearity, we compute vectors AB and BC and check if one is a scalar multiple of the other.

 

Calculation:

Position vectors of three points:

A(2i + 3j - 4k), B(i - 2j + 3k), C(-7j + 10k)

⇒ Vector AB = B - A

AB = (i - 2j + 3k) - (2i + 3j - 4k)

⇒ AB = (i - 2i) + (-2j - 3j) + (3k + 4k)

⇒ AB = (-i - 5j + 7k)

 

⇒ Vector BC = C - B

BC = (-7j + 10k) - (i - 2j + 3k)

⇒ BC = (-7j + 10k - i + 2j - 3k)

⇒ BC = (-i - 5j + 7k)

 

Since AB = BC, vectors AB and BC are parallel.

∴ The points A, B, and C are collinear.

Mathematical Methods of Physics Question 4:

If \(\vec{A}=a x \hat{\imath}+b y \hat{\jmath}+c z \hat{k}\) where a, b, c are constants, then \(\iint_S \vec{A} . d \vec{S}\) where S is the surface of a unit sphere, is

  1. \(\frac{4}{3} \pi(a+b+c)^2\)
  2. \(\frac{4}{3} \pi(a+b+c)\)
  3. 0
  4. \(\frac{4}{3} \pi\left(a^2+b^2+c^2\right)\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{4}{3} \pi(a+b+c)\)

Mathematical Methods of Physics Question 4 Detailed Solution

Calculation:

Given:

\(\vec{A} = ax \hat{\imath} + by \hat{\jmath} + cz \hat{k}\)

where a, b, and c are constants. S is the surface of a unit sphere. 

Using the Divergence Theorem

\(\iint_S \vec{A} \cdot d\vec{S} = \iiint_V (\nabla \cdot \vec{A}) \, dV\)

where V  is the volume enclosed by S, and \(\nabla \cdot \vec{A}\) is the divergence of \(\vec{A}\).

Compute the Divergence of \(\vec{A}\).

\(\nabla \cdot \vec{A} = \frac{\partial}{\partial x}(ax) + \frac{\partial}{\partial y}(by) + \frac{\partial}{\partial z}(cz)== a + b + c\)

Substitute into the Divergence Theorem

The volume V of the unit sphere is:

\(V = \frac{4}{3} \pi (1)^3 = \frac{4}{3} \pi\)

\(\iint_S \vec{A} \cdot d\vec{S} = \iiint_V (a + b + c) \, dV = (a + b + c) \iiint_V 1 \, dV = (a + b + c) \cdot \frac{4}{3} \pi\)

Thus, option '2' is correct.

Mathematical Methods of Physics Question 5:

If \(\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}\) is a position vector.

Match List I with List II

  LIST I    LIST Il
A. div \(\vec{r}\) l. \(-\frac{\vec{r}}{|\vec{r}|^3}\)
B. curl \(\vec{r}\) ll. 3
C. grad \(|\vec{r}|\) lll. 0
D. grad \( \frac{1}{|\vec{r}|}\) lV. \(\frac{\vec{r}}{|\vec{r}|}\)

Choose the correct answer from the options given below:

  1. (A) - (III), (B) - (II), (C) - (I), (D) - (IV)
  2. (A) - (III), (B) - (II), (C) - (IV), (D) - (I)
  3. (A) - (II), (B) - (III), (C) - (IV), (D) - (I)
  4. (A) - (II), (B) - (III), (C) - (I), (D) - (IV)

Answer (Detailed Solution Below)

Option 3 : (A) - (II), (B) - (III), (C) - (IV), (D) - (I)

Mathematical Methods of Physics Question 5 Detailed Solution

Calculation:

Given the position vector:

\(\vec{r} = x \hat{\imath} + y \hat{\jmath} + z \hat{k},\)

we analyze each operation:

\( Divergence (\text{div} \, \vec{r}):\)

\(\text{div} \, \vec{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 1 + 1 + 1 = 3.\)

Thus, \(\text{div} \, \vec{r} = 3\)

\( Curl (\text{curl} \, \vec{r}):\)

\(\text{curl} \, \vec{r} = \nabla \times \vec{r}.\)

Since \(\vec{r}\) is a gradient field, its curl is always zero:

\(\text{curl} \, \vec{r} = 0.\)

\(\text{Gradient of}{ (|\vec{r}|)}:\)

\(|\vec{r}| = \sqrt{x^2 + y^2 + z^2}.\)

The gradient of \(|\vec{r}|\) is:

\(\text{grad} \, |\vec{r}| = \nabla |\vec{r}| = \frac{\vec{r}}{|\vec{r}|}.\)

\( \text{Gradient of}(\frac{1}{|\vec{r}|})\)

\(\frac{1}{|\vec{r}|} = (x^2 + y^2 + z^2)^{-\frac{1}{2}}. \)

The gradient of \((\frac{1}{|\vec{r}|})\) is:

\(\text{grad} \, \frac{1}{|\vec{r}|} = \nabla \left(\frac{1}{|\vec{r}|}\right) = -\frac{\vec{r}}{|\vec{r}|^3}.\)

Matching List I with List II

\(\)\(\begin{align*} \text{(A)} \quad \text{div} \, \vec{r} &= 3 \quad \rightarrow \quad \text{II}, \\ \text{(B)} \quad \text{curl} \, \vec{r} &= 0 \quad \rightarrow \quad \text{III}, \\ \text{(C)} \quad \text{grad} \, |\vec{r}| &= \frac{\vec{r}}{|\vec{r}|} \quad \rightarrow \quad \text{IV}, \\ \text{(D)} \quad \text{grad} \, \frac{1}{|\vec{r}|} &= -\frac{\vec{r}}{|\vec{r}|^3} \quad \rightarrow \quad \text{I}. \end{align*}\)

Thus, option '3' is correct.

Top Mathematical Methods of Physics MCQ Objective Questions

The value of the integral \(I=\int_0^{\infty} e^{-x} x \sin (x) d x\) is

  1. 3/4
  2. 2/3
  3. 1/2
  4. 1/4

Answer (Detailed Solution Below)

Option 3 : 1/2

Mathematical Methods of Physics Question 6 Detailed Solution

Download Solution PDF

Explanation:

  • \(I=\int_0^{\infty} e^{-x} x \sin (x) d x\)

This integration from limit 0 to \(\infty\) can be so0lved using Laplace Transform 

  • \(L[f(x)]=\int_0^\infty \mathrm{e}^{-sx}\,\mathrm f (x){d}x\) --------1

 

  • \(L[sinax]=\frac {a} {s^2+a^2}\),
  • Here  \(L[sinx]=\frac {1} {s^2+1}\)

Now, \(L[x^nf(x)]=(-1)^n\frac{d^n} {ds^n} [Lf(x)]\)

  •  \(L[xsinx]\)\(=(-1)^1\frac {d} {ds} [\frac{1} {s^2+1}]\) (As, \(L[sinx]=\frac {1} {s^2+1}\))
  • \(L[xsinx]=\)\((-1)\frac {-2s} {(s^2+1)^2}\)\(=\frac {2s} {(s^2+1)^2}\)

Now from equation 1, we know that s = 1,

  • So, \(L[f(x)]=\int_0^\infty \mathrm{e}^{-sx}\,\mathrm f (x){d}x\) \(=\frac {2\times1} {(1^2+1)^2}=\frac {2} {4}=\frac {1} {2}\)

So, the correct answer is \(\frac {1} {2} \).

 

The bisection method is used to find a zero x0 of the polynomial f(x) = x3 - x- 1. Since f(1) = -1, while f(2) = 3, the values a = 1 and b = 2 are chosen as the boundaries of the interval in which the x0 lies. If the bisection method is iterated three times, the resulting value of x0 is

  1. 15/8
  2. 13/8
  3. 11/8
  4. 9/8

Answer (Detailed Solution Below)

Option 3 : 11/8

Mathematical Methods of Physics Question 7 Detailed Solution

Download Solution PDF

Explanation:

Given the polynomial \( f(x) = x^3 - x^2 - 1\), the initial interval [a, b] = [1, 2] and the function values at the two endpoints are f(1) = -1 and f(2) = 3. An iteration in the bisection method consists of the following steps:

  1. Compute the midpoint c = (a + b) / 2.
  2. Compute the value of the function f(c).
  3. If f(c) is very close to 0, then c is our root. Else, replace the interval [a, b] with [a, c] if f(a) and f(c) have opposite signs; otherwise, replace the interval with [c, b].

The correct bisection method would go as follows:

Iteration 1:

\(c = \frac{(a + b) }{2} = \frac{(1 + 2)}{2}= 1.5\)

\(f(c) = f(1.5) = (1.5)^3 - (1.5)^2 - 1 = 0.125\)

Since f(a) = -1 and f(c) = 0.125 have different signs, we replace b = c. Now the new interval becomes [1, 1.5].

Iteration 2:

\(c =\frac{ (a + b) }{ 2} = \frac{(1 + 1.5)} { 2} = 1.25\)

\(f(c) = f(1.25) = (1.25)^3 - (1.25)^2 - 1 = -0.421875\)

Since f(a) = -1 and f(c) = -0.421875 have the same sign, we replace a = c. Now the new interval becomes [1.25, 1.5].

Iteration 3:

\(c = \frac{(a + b) }{ 2 }= \frac{(1.25 + 1.5)}{2 }= 1.375\)

\(f(c) = f(1.375) ~= (1.375)^3 - (1.375)^2 - 1 = -0.162109375\)

Since f(a) = -0.421875 and f(c) = -0.162109375 have the same sign, we replace a = c. Now the new interval becomes [1.375, 1.5].

After three iterations, the best estimate for the root x0 is our most recent midpoint, c = 1.375 or 11/8.

The matrix \(R_{\widehat{ก}}(θ)\) represents a rotation by an angle θ about the axis n̂. The value of θ and n̂ corresponding to the matrix \(\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{2 \sqrt{2}}{3} \\ 0 & \frac{2 \sqrt{2}}{3} & \frac{1}{3} \end{array}\right)\), respectively, are

  1. \(\pi / 2 \text { and }\left(0,-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)\)
  2. \(\pi / 2 \text { and }\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)\)
  3. \(\pi \text { and }\left(0,-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)\)
  4. \(\pi \text { and }\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)\)

Answer (Detailed Solution Below)

Option 4 : \(\pi \text { and }\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)\)

Mathematical Methods of Physics Question 8 Detailed Solution

Download Solution PDF

Explanation:

  • For a rotation matrix R in 3D, the trace of the rotation matrix (sum of the diagonal elements) relates to the angle of rotation \(\theta\) by the formula \(\text{Tr}(R) = 1 + 2\cos(\theta)\), yielding \(\cos(\theta) = \frac{(\text{Tr}(R) - 1)}2\).
  • Our rotation matrix given is: \(\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{2 \sqrt{2}}{3} \\ 0 & \frac{2 \sqrt{2}}{3} & \frac{1}{3} \end{array}\right)\)
  • Calculating the trace gives us: 

\( \text{Tr}(R) = -1 + (-1/3) + (1/3) = -1 \implies \cos(\theta) = (-1) \implies \theta =( \pi \text{ or } -\pi) \)

  •  The rotation axis can be obtained using: 

\([ n_x = \frac{\sqrt{(R_{22} - R_{11}) + (R_{33} - R_{11}) + 2}}{2} ] [ n_y = \frac{\sqrt{(R_{33} - R_{22}) + (R_{11} - R_{22}) + 2}}{2} ] [ n_z = \frac{\sqrt{(R_{11} - R_{33}) + (R_{22} - R_{33}) + 2}}{2} ]\) which are the square roots of the elements of the rotation matrix.

  • The right combination of the signs (±) is obtained by looking at the off-diagonal elements of the rotation matrix. From the given matrix, we have:

\([ n_x = 0, \quad n_y = \pm\sqrt{1/3}, \quad n_z = \pm\sqrt{2/3} ]\)

  • The signs of \(n_y\) and \(n_z\) correspond to \(R_{23} - R_{32}\) and \(R_{12} - R_{21}\) of the rotation matrix, respectively.
  • This results in \(n_y=-\sqrt{1/3} \quad and \quad n_z=\sqrt{2/3}\).
  • But since the axis direction is determined up to the sense of rotation, we switch them (so that \(n_y\) is positive and \(n_z\) negative) and switch the sign of the angle of rotation, giving us:

\([ n = \left(0, \sqrt{1/3}, \sqrt{2/3}\right), \quad \theta = \pi ]\)

Ajar J1 contains equal number of balls of red, blue and green colours, while another jar J2 contains balls of only red and blue colours, which are also equal in number. The probability of choosing J1 is twice as large as choosing J2. If a ball picked at random from one of the jars turns out to be red, the probability that it came from J1 is

  1. 2/3
  2. 3/5
  3. 2/5
  4. 4/7

Answer (Detailed Solution Below)

Option 4 : 4/7

Mathematical Methods of Physics Question 9 Detailed Solution

Download Solution PDF

Concept:

 We are using Bayes' Theorem which describes the probability of occurrence of an event related to any condition. It is considered as the case of Conditional Probability. 

Here, we have to find the Probability of Red ball in Jar \(J_1\).

Formula used\(P(J_1) P(\frac {R} {J_1})\over P(J_1) P(\frac {R} {J_1}) + P(J_2) P(\frac {R} {J_2})\)

Explanation:   

F1 Teaching Arbaz 23-10-23 D10

 

Given,

  • Probability of Red ball in Jar \(J_1 = \frac {1} {3} \)
  • Probability of red ball in Jar \(J_2 = \frac {1} {2}\)
  • Probability relation of both jars is given as \(P(J_1) = 2P(J_2)\)

Now, we know that,

  • \(P(J_1) +P(J_2) = 1\)
  • \(2P(J_2) + P(J_1) = 1 \)
  • \(P(J_2) = \frac {1} {3}\) and \(P(J_1) = \frac {2} {3}\)

 

Using Bayes' formula, we get,

  • \(P(J_1) P(\frac {R} {J_1})\over P(J_1) P(\frac {R} {J_1}) + P(J_2) P(\frac {R} {J_2})\)

 

  • => \(\frac {2} {3} \times \frac {1} {3} \over \frac {2} {3} \times \frac {1} {3} + \frac {1} {3}\times \frac {1} {2}\) \(=\)\(\frac {2} {9}\over \frac {2} {9} + \frac {1} {6}\)\(=\) \(\frac {2} {9}\times \frac {18} {7}\)\(=\)\(\frac {4} {7}\)

 

Consider the set of polynomials {x(t) = a0 + a1t + ··· + an-1 tn-1} in t of degree less than n, such that x(0) = 0 and x(1) = 1. This set

  1. constitutes a vector space of dimension n
  2. constitutes a vector space of dimension n − 1
  3. constitutes a vector space of dimension n - 2
  4. does not constitute a vector space

Answer (Detailed Solution Below)

Option 4 : does not constitute a vector space

Mathematical Methods of Physics Question 10 Detailed Solution

Download Solution PDF

Concept:

Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a monomial, a two-term polynomial is called a binomial, and a three-term polynomial is called a trinomial.

Calculation:

x(t) = a0 + a1t + a2t2 + ... + an-1tn-1

x(0) = 0

a0 = 0

x(t) = a1t + a2t2 + ... + an-1tn-1

Also, x(1) = 1

1 = a1 + a2 + ... + an-1

t,t2,t3 form basis.

c1t + c2t+ c3t3 = 0

If c1 = c2 = c3 ...= 0

Thus, it does not constitute a vector space.

The correct answer is option (4).

If the Bessel function of integer order n is defined as \(J_n(x)=\sum_{k=0}^{\infty} \frac{(-1)^k}{k !(n+k) !}\left(\frac{x}{2}\right)^{2 k+n}\) then \(\frac{d}{d x}\left[x^{-n} J_n(x)\right]\) is 

  1. \(-x^{-[n+1]} J_{n+1}(x)\)
  2. \(-x^{-[n+1]} J_{n-1}(x)\)
  3. \(-x^{-n} J_{n-1}(x)\)
  4. \(-x^{-n} J_{n+1}(x)\)

Answer (Detailed Solution Below)

Option 4 : \(-x^{-n} J_{n+1}(x)\)

Mathematical Methods of Physics Question 11 Detailed Solution

Download Solution PDF

Explanation:

  • The recurrence relation is: \((n) J_n(x) - xJ_n'(x) = xJ_{n-1}(x)\)
  • Rearranging and multiplying the relation by \(x^{-n}\), we get: \(-x^{-n} J_n'(x) = x^{-(n-1)} J_{n-1}(x) - x^{-n} (n) J_n(x)\),
  • Which simplifies to: \(-x^{-n} J_n'(x) = x^{-n} (J_{n-1}(x) - nJ_n(x))\)
  • But another recurrence relation involves Bessel functions, which is \(J_{n - 1}(x) + J_{n + 1}(x) = 2nJ_n(x) / x\),
  • From above we can replace \((J_{n - 1}(x) = x[J_{n + 1}(x) - 2nJ_n(x) / x])\) in our expression for \(-x^{-n} J_n'(x)\)
  • This results in: \(-x^{-n} J_n'(x) = x^{-n} (x[J_{n + 1}(x) - 2nJ_n(x) / x] - nJ_n(x))\)
  • After simplifying, it becomes: \(-x^{-n} J_n'(x) = -x^{-n} J_{n + 1}(x)\)
  • Solving for the derivative of interest, we get: \([\frac{d}{d x}\left[x^{-n} J_n(x)\right] = -x^{-n} J_{n + 1}(x)]\)

Let C be the circle of radius π/4, centered at z = \(\frac{1}{4}\) in the complex z-plane that is traversed counter-clockwise. The value of the contour integral ∮c \(\frac{{{{\rm{z}}^{\rm{2}}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{4z}}}}\)dz is

  1. 0
  2. \(\frac{{{\rm{i}}{{\rm{\pi }}^2}}}{4}\)
  3. \(\frac{{{\rm{i}}{{\rm{\pi }}^2}}}{{16}}\)
  4. \(\frac{{{\rm{i\pi }}}}{4}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{{\rm{i}}{{\rm{\pi }}^2}}}{{16}}\)

Mathematical Methods of Physics Question 12 Detailed Solution

Download Solution PDF

Concept:

Contour integration is the process of calculating the values of a contour integral around a given contour in the complex plane.

Calculation:

f(z) = (\({π \over sin 4z}\))2

Thus the poles are

z0 = 0, π/4   

4z = nπ, z = 0, π/4

The rest are outside the contour.

Residue at z = 0 is 

[\({ π \over 4z- {4^3z^3\over 3!}+... }\)]2

= [\({ 1 \over 4- {4^3z^2\over 3!}+... }\)]2

= [\({4- {4^3z^2\over 3!}+... }\)]-2

Residue for z = π/4

z  - π/4 = t

sin (4t + π) = - sin 4t

\([{t+{π \over 4}\over sin 4 (t + {π \over 4})}]^2\)

(\({t+ {π \over 4}\over sin 4 (t + {π \over 4t})}\))2 = \({t^2 + {π^2\over 4} + 2t {π \over 4} \over sin^2 4t}\) 

\({π \over 2}{t \over 16 t^2[1 - ...]^2}\) = \({π \over 32t} [1 - ...]^2 \)

b1 = \({π \over 32}\)

c \({z^2 \over sin^2 4z}\) dz = 2πi [0 + \({\pi\over 32}\)]

\({i\pi^2\over 16}\) 

The correct answer is option (3).

The locus of the curve \(\operatorname{Im}\left(\frac{\pi(z-1)-1}{z-1}\right)=1\) in the complex z-plane is a circle centred at (x0, y0) and radius R. The values of (x0, y0) and R. respectively, are

  1. \(\left(1, \frac{1}{2}\right)\) and \(\frac{1}{2}\)
  2. \(\left(1,- \frac{1}{2}\right)\) and \(\frac{1}{2}\)
  3. (1, 1) and 1
  4. (1, -1) and 1

Answer (Detailed Solution Below)

Option 1 : \(\left(1, \frac{1}{2}\right)\) and \(\frac{1}{2}\)

Mathematical Methods of Physics Question 13 Detailed Solution

Download Solution PDF

Solution-Option-1\((1,\frac {1} {2}) and \frac {1} {2}\)

Concept-  Here, we have to find center of the curve and radius of the curve using equation of circle which is given by-\(x^2+y^2+2gx+2fy+c=0\) with center \((x_0,y_0)=(-g,-f) \) and radius is \(R=\sqrt{f^2+g^2-c^2}\).

Formula Used-

  • \(Im(z_1-z_2)=Im(z_1)-Im(z_2)\)
  • \(R=\sqrt{f^2+g^2-c^2}\)

 

Calculation-

  • The locus of the curve is \(Im(\frac {\pi(z-1)-1} {(z-1)})=1\)
  • \(Im(z_1-z_2)=Im(z_1)-Im(z_2)\)

 

  • Now this locus can be written as, \(Im(\frac {\pi(z-1)} {(z-1)}-\frac{1} {z-1})=1\)

 

  • \(Im(\pi)-Im(\frac {-1} {z-1})\)
  • \(Im(\pi)\) has zero value, so, we will see the solution of  \(Im(\frac {-1} {z-1})\)

Now, as we know \(z=x+iy\)

  • \(\frac{1} {z-1}=\frac {1} {x+iy-1}=\frac {1} {(x-1)+iy}\)

 

  • \(\frac{1} {z-1}=\frac {1} {x+iy-1}=\frac {1} {(x-1)+iy}\)
  • By rationalise above value, we get
  • \(\frac {1} {(x-1)+iy}\times\frac {(x-1)-iy} {(x-1)-iy}\)\(=\frac {(x-1)-iy} {(x-1)^2-(iy)^2}=\frac {(x-1)-iy} {(x-1)^2+y^2} \)

 

Imaginary part of above equation is \(\frac {-y} {(x-1)^2+y^2} \)\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

  • \(Im(\frac {-1} {z-1})\)\(=\)\(\frac {y} {(x-1)^2+y^2}=1\)
  • \(y=(x-1)^2+y^2\)
  • \(y=x^2+1-2x+y^2\)
  • \(x^2+y^2-2x-y+1=0\)
  • This represents the equation of circle and is similar to \(x^2+y^2+2gx+2fy+c=0\)  with center \((-g,-f)\) and radius of circle is given by formula \(R=\sqrt{f^2+g^2-c^2}\)
  • Here, \(g=-1, f=\frac {-1} {2}\)
  • Coordinates of center of circle are \((x_0,y_0)=(-g,-f)=(1,\frac{1} {2})\)
  • Radius of circle \(R=\sqrt{f^2+g^2-c^2}\)\(=\sqrt{1+(\frac {1} {2})^2-1}=\sqrt{1+\frac{1} {4}-1}=\frac {1} {2}\)

 

So, the correct answer is \((x_0,y_0)=(1,\frac{1} {2})\) and \(R=\frac {1} {2}\)

 

A one-dimensional rigid rod is constrained to move inside a sphere such that its two ends are always in contact with the surface. The number of constraints on the Cartesian coordinates of the endpoints of the rod is

  1. 3
  2. 5
  3. 2
  4. 4

Answer (Detailed Solution Below)

Option 1 : 3

Mathematical Methods of Physics Question 14 Detailed Solution

Download Solution PDF

Concept-  

The Distance Formula can be used to find the distance between two points on the coordinate plane. It is a literal equation with several variables representing the locations of the points.

Formula Used-

Assume, \((x_1,x_2)\) and \((y_1,y_2)\) are coordinates on axes, and d is the distance between them. Then,

  • \(d^2=(x_2-x_1)^2 +(y_2 - y_1)^2\)

 

F1 Teaching Arbaz 23-10-23 D6

 

Explanation:

  • AB is a rod with co-ordinates \(A(x_1,y_1,z_1)\) and \(B(x_2,y_2,z_2)\)
  • Let the length of the rod = \(L\)
  • The radius of the sphere = \(R\)

 

\((x_2-0)^2+(y_2-0)^2+(z_2-0)^2=R^2\)

\((x_1-0)^2+(y_1-0)^2+(z_1-0)^2=R^2\)

\((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2=L^2\)

So, there are three constraint equations.

A box contains 5 white and 4 black balls. Two balls are picked together at random from the box. What is the probability that these two balls are of different colours?

  1. 1/2
  2. 5/18
  3. 1/3
  4. 5/9

Answer (Detailed Solution Below)

Option 4 : 5/9

Mathematical Methods of Physics Question 15 Detailed Solution

Download Solution PDF

Concept:

Probability means possibility. It is a branch of mathematics that deals with the occurrence of a random event. The value is expressed from zero to one.

Calculation:

Probability that the two balls are of different colors 5 W, 4 B

\({5C_1 \times 4C_2\over 9 C_2}\)

\({{5!\over 4!\times 1!}\times{{4!}\over 3!\times 1!}\over {9!\over 7!\times 2!}}\)

\({5 \over 9}\)

The correct answer is option (4).

Get Free Access Now
Hot Links: teen patti 500 bonus teen patti octro 3 patti rummy teen patti game paisa wala