Simplification MCQ Quiz - Objective Question with Answer for Simplification - Download Free PDF
Last updated on Jun 3, 2025
Latest Simplification MCQ Objective Questions
Simplification Question 1:
Find the value of the expression given below, correct upto 2 decimal places.
\(\frac{(0.96)^{3}-(0.1)^{3}}{(0.96)^{2}+0.096+(0.1)^{2}}\)
Answer (Detailed Solution Below)
Simplification Question 1 Detailed Solution
Given:
The value of \(\frac{{{{\left( {0.96} \right)}^3} - {{\left( {0.1} \right)}^3}}}{{{{\left( {0.96} \right)}^2} + 0.096 + {{\left( {0.1} \right)}^2}}}{\rm{ }}\)
Formula Used:
\(\frac{a^3 - b^3}{a^2 + ab + b^2} = a - b\)
Calculation:
Here, a = 0.96 and b = 0.1 .
Using the formula:
\(\frac{{(0.96)^3 - (0.1)^3}}{{(0.96)^2 + (0.96 \times 0.1) + (0.1)^2}}\)
⇒ \(\frac{{(0.96)^3 - (0.1)^3}}{{(0.96)^2 + 0.096 + (0.1)^2}}\)
⇒ 0.96 - 0.1
⇒ 0.86
The correct answer is option 3.
Simplification Question 2:
Given that 420.66 = x, 420.65= y and xz = y4 , then the value of z is close to:
Answer (Detailed Solution Below)
Simplification Question 2 Detailed Solution
Given:
420.66 = x, 420.65 = y, and xz = y4
Calculation:
Express x and y in terms of 42:
x = 420.66
y = 420.65
Substitute x and y into the given equation xz = y4:
(420.66)z = (420.65)4
Simplify the exponents:
420.66z = 422.6
Equate the powers of 42:
0.66z = 2.6
Solve for z:
z = 2.6 / 0.66
z ≈ 3.94
The value of z is approximately 3.94.
Simplification Question 3:
Find the value of given expression \(\rm 5\frac{1}{2}+3+2\frac{2}{3}+7\frac{1}{2}+6\frac{1}{3}\)
Answer (Detailed Solution Below)
Simplification Question 3 Detailed Solution
Given:
\(\rm 5\frac{1}{2}+3+2\frac{2}{3}+7\frac{1}{2}+6\frac{1}{3}\)
Formula used:
Basic arithmetic operations
Calculation:
\(\rm 5\frac{1}{2}+3+2\frac{2}{3}+7\frac{1}{2}+6\frac{1}{3}\)
⇒11/2 + 3 + 8/3 + 15/2 + 19/3
⇒ (11 × 3 + 3 × 6 + 8 × 2 + 15 × 3 + 19 × 2) / 6
⇒ (33 + 18 + 16 + 45 + 38) / 6
⇒ 150 / 6 = 25
∴ The correct answer is option (3).
Simplification Question 4:
Find the value of \(\left[(91 \div 7) \times\left\{\frac{64}{4}+\frac{17}{6} \times(8-2)\right\}\right]\)
Answer (Detailed Solution Below)
Simplification Question 4 Detailed Solution
Given:
Expression: [(91 ÷ 7) × {(64 ÷ 4) + (17 ÷ 6) × (8 - 2)}]
Formula Used:
Order of operations (BODMAS): Solve inside brackets first, then division/multiplication, and finally addition/subtraction.
Calculation:
⇒ [(91 ÷ 7) × {(64 ÷ 4) + (17 ÷ 6) × (8 - 2)}]
⇒ (13) × {(16) + (17 ÷ 6) × (6)}
⇒ (13) × {16 + (17 × 6 ÷ 6)}
⇒ (13) × {16 + 17}
⇒ 13 × 33
⇒ 429
∴ The value of [(91 ÷ 7) × {(64 ÷ 4) + (17 ÷ 6) × (8 - 2)}] is 429.
Simplification Question 5:
Simplify the following: \(\dfrac{27\times3^n-3\times3^{n+1}}{81\times3^{n+1}-9\times3^{n+2}}\)
Answer (Detailed Solution Below)
Simplification Question 5 Detailed Solution
Given :
\(\dfrac{27×3^n-3×3^{n+1}}{81×3^{n+1}-9×3^{n+2}}\)
Formula used:
am × an = am + n
am ÷ an = am - n
Calculation :
\(\dfrac{27×3^n-3×3^{n+1}}{81×3^{n+1}-9×3^{n+2}}\)
⇒ \(\rm \dfrac{3^3×3^n-3^1×3^{n+1}}{3^4× 3^{n+1}-3^2×3^{n+2}}\)
⇒ \(\rm \dfrac{3^{3+n}-3^{n+2}}{3^{n+5}-3^{n+4}}\)
⇒ \(\rm \dfrac{3^{n+2}\times(3-1)}{3^{n+4}\times(3-1)}\)
⇒ \(\rm \dfrac{3^{n+2}}{3^2× 3^{n+2}}\) = \(\dfrac{1}{9}\)
∴ The answer is \(\dfrac{1}{9}\) .
Top Simplification MCQ Objective Questions
Which of the following number is largest among all?
\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)
Answer (Detailed Solution Below)
Simplification Question 6 Detailed Solution
Download Solution PDFConcebt used
a.b̅ = a.bbbbbb
a.0b̅ = a.0bbbb
Calculation
0.7 = 0.700000 ̇....
\(0.\bar7 = 0.77777 \ldots\)
\(0.0\bar7 = 0.077777 \ldots\)
\(0.\overline {07} = 0.070707 \ldots\)
Now, 0.7777… or \(0.\bar7\) is largest among all.What is the value of \(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\)
Answer (Detailed Solution Below)
Simplification Question 7 Detailed Solution
Download Solution PDFSolution:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
Shortcut Trick
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37
What will come in the place of question mark (?) in the following question?
\(? = \sqrt[5]{{{{\left( {243} \right)}^2}}}\)
Answer (Detailed Solution Below)
Simplification Question 8 Detailed Solution
Download Solution PDFSolution:
We have to follow the BODMAS rule
Calculation:
\(? = \sqrt[5]{{{{\left( {243} \right)}^2}}}\)
\(⇒ ? = (243)^{\frac{2}{5}}\)
\(⇒ ? = (3 × 3 × 3 × 3 × 3)^{2⁄5}\)
\(⇒ ? = (3^5)^{2⁄5}\)
⇒ ? = 32
∴ ? = 9What is the square root of (8 + 2√15)?
Answer (Detailed Solution Below)
Simplification Question 9 Detailed Solution
Download Solution PDFFormula used:
(a + b)2 = a2 + b2 + 2ab
Calculation:
Given expression is:
\(\sqrt {8\; + \;2\sqrt {15} \;} \)
⇒ \(\sqrt {5\; + \;3\; + \;2\times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{(\sqrt 5 )}^2}\; + \;{{\left( {\sqrt 3 } \right)}^2}\; + \;2 \times \sqrt 5 \times \sqrt 3 \;} \)
⇒ \(\sqrt {{{\left( {\;\sqrt 5 \; + \;\sqrt 3 \;} \right)}^2}\;} \)
⇒ \(\sqrt 5 + \sqrt 3 \)
On simplification \(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \) reduces to
Answer (Detailed Solution Below)
Simplification Question 10 Detailed Solution
Download Solution PDF\(\sqrt {{{\left( {0.65} \right)}^2} - {{\left( {0.16} \right)}^2}} \)
Since,
a2 - b2 = (a - b) ( a + b)
\(\begin{array}{l} \Rightarrow \sqrt {\left( {0.65 + 0.16} \right)\left( {0.65 - 0.16} \right)} \\ \Rightarrow \sqrt {\left( {0.81} \right)\left( {0.49} \right)} \\ \Rightarrow \sqrt {\left( {0.9} \right)\left( {0.9} \right) \times \left( {0.7} \right)\left( {0.7} \right)} \end{array}\)
⇒ 0.9 × 0.7 = 0.63
∴ Answer is 0.63The square root of ((10 + √25)(12 – √49)) is:
Answer (Detailed Solution Below)
Simplification Question 11 Detailed Solution
Download Solution PDFConcept:
We can find √x using the factorisation method.
Calculation:
√[(10 + √25) (12 - √49)]
⇒ √[(10 + 5)(12 – 7)]
⇒ √(15 × 5)
⇒ √(3 × 5 × 5)
⇒ 5√3
Answer (Detailed Solution Below)
Simplification Question 12 Detailed Solution
Download Solution PDFGiven,
23 × 34 × 1080 ÷ 15 = 6x
⇒ 23 × 34 × 72 = 6x
⇒ 23 × 34 × (2 × 62) = 6x
⇒ 24 × 34 × 62 = 6x
⇒ (2 × 3)4 × 62 = 6x [∵ xm × ym = (xy)m]
⇒ 64 × 62 = 6x
⇒ 6(4 + 2) = 6x
⇒ x = 6
If √3n = 729, then the value of n is equal to:
Answer (Detailed Solution Below)
Simplification Question 13 Detailed Solution
Download Solution PDFGiven:
√3n = 729
Formulas used:
(xa)b = xab
If xa = xb then a = b
Calculation:
√3n = 729
⇒ √3n = (32)3
⇒ (3n)1/2 = (32)3
⇒ (3n)1/2 = 36
⇒ n/2 = 6
∴ n = 12
Answer (Detailed Solution Below)
Simplification Question 14 Detailed Solution
Download Solution PDFGiven expression,
(81.84 + 118.16) ÷ 53 = 1.2 × 2 + ?
⇒ 200 ÷ 53 = 1.2 × 2 + ?
⇒ 200 ÷ 125 = 1.2 × 2 +?
⇒ 1.6 = 2.4 + ?
⇒ ? = -0.8