Collinearity of points MCQ Quiz in मल्याळम - Objective Question with Answer for Collinearity of points - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 22, 2025

നേടുക Collinearity of points ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Collinearity of points MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Collinearity of points MCQ Objective Questions

Top Collinearity of points MCQ Objective Questions

Collinearity of points Question 1:

If the points (2, - 1, 2), (1, 2, - 3) and (3, k, 7) are collinear, then find the value of k.

  1. 3
  2. - 3
  3. 4
  4. - 4

Answer (Detailed Solution Below)

Option 4 : - 4

Collinearity of points Question 1 Detailed Solution

CONCEPT:

If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)

CALCULATION:
 
Given: The points (2, - 1, 2), (1, 2, - 3) and (3, k, 7) are collinear
As we know that, if the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)
Here, x1 = 2, y1 = - 1, z1 = 2, x2 = 1, y2 = 2, z2 = - 3, x3 = 3, y3 = k and z3 = 7
 
⇒ \(\left| {\begin{array}{*{20}{c}} 2&{ - 1}&2\\ 1&2&{ - 3}\\ 3&k&7 \end{array}} \right| = 0\)
 
⇒ 2 × (14 + 3k) + 1 × (7 + 9) + 2 × (k - 6) = 0
 
⇒ 28 + 6k + 16 + 2k - 12 = 0
 
⇒ 32 + 8k = 0
 
⇒k = - 4
 
Hence, option D is the correct answer.

Collinearity of points Question 2:

If the points (1, 3, 1), (2, - 1, k) and (0, 7, 3) are collinear, then find the value of k.

  1. 0
  2. 1
  3. - 1
  4. None of these

Answer (Detailed Solution Below)

Option 3 : - 1

Collinearity of points Question 2 Detailed Solution

CONCEPT:

If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)

CALCULATION:
 
Given: The points (1, 3, 1), (2, - 1, k) and (0, 7, 3) are collinear
As we know that, if the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)
Here, x1 = 1, y1 = 3, z1 = k, x2 = 2, y2 = - 1, z2 = k, x3 = 0, y3 = 7 and z3 = 3
 
⇒ \(\left| {\begin{array}{*{20}{c}} 1&3&1\\ 2&{ - 1}&k\\ 0&7&3 \end{array}} \right| = 0\)
 
⇒ 1 × (- 3 - 7k) - 3 × (6 - 0) + 1 × (14 - 0) = 0
 
⇒ - 3 - 7k - 18 + 14 = 0
 
⇒ k = - 1
 
Hence, option C is the correct answer.

Collinearity of points Question 3:

The points (-5, 1), (1, k) and (4, -2) are collinear if the value of k is

  1. -1
  2. 2
  3. 3
  4. 1

Answer (Detailed Solution Below)

Option 1 : -1

Collinearity of points Question 3 Detailed Solution

Given:

Points: (-5, 1), (1, k), and (4, -2)

Formula used:

For three points to be collinear, the area of the triangle formed by them must be zero.

Area of a triangle using coordinates:

Area = (1/2) × [x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]

Calculation:

Since the points are collinear:

(1/2) × [-5(k + 2) + 1(-2 - 1) + 4(1 - k)] = 0

-5(k + 2) + 1(-3) + 4(1 - k) = 0

-5k - 10 - 3 + 4 - 4k = 0

-9k - 9 = 0

-9k = 9

k = -1

∴ The value of k is -1.

Collinearity of points Question 4:

If points \(P\left( 4,5,x \right) ,Q\left( 3,y,4 \right) \) and \( R\left( 5,8,0 \right) \) are colinear, then the value of \(x+y\) is

  1. \(-4\)
  2. \(3\)
  3. \(5\)
  4. \(4\)

Answer (Detailed Solution Below)

Option 4 : \(4\)

Collinearity of points Question 4 Detailed Solution

\(\vec{PR}=(5-4)\hat{i}+(8-5)\hat{j}+(0-x)\hat{k}\)

\(\implies \vec{PR}=\hat{i}+3\hat{j}-x\hat{k}\)

Again, \(\vec{QR}=(5-3)\hat{i}+(8-y)\hat{j}+(0-4)\hat{k}\)

\(\implies \vec{QR}=2\hat{i}+(8-y)\hat{j}-4\hat{k}\)

Since, P, Q and R are co-linear points, hence

\(\dfrac{1}{2}=\dfrac{3}{8-y}=\dfrac{-x}{-4}\)

On Solving, we get:-

\(x=2,y=2\)

\(\implies x+y=4\)

Hence, answer is option-(D).

Get Free Access Now
Hot Links: teen patti lotus teen patti master game teen patti vungo teen patti joy mod apk