Differentiation of Parametric Functions MCQ Quiz in मल्याळम - Objective Question with Answer for Differentiation of Parametric Functions - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 23, 2025

നേടുക Differentiation of Parametric Functions ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Differentiation of Parametric Functions MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Differentiation of Parametric Functions MCQ Objective Questions

Top Differentiation of Parametric Functions MCQ Objective Questions

Differentiation of Parametric Functions Question 1:

Find dydx if x = a (θ + sin θ) and y = a (1 - cos θ)

  1. tan θ2
  2. tan θ
  3. sin θ
  4. None of these

Answer (Detailed Solution Below)

Option 1 : tan θ2

Differentiation of Parametric Functions Question 1 Detailed Solution

CONCEPT:

  • d(sinx)dx=cosx
  • d(cosx)dx=sinx

If x = f(t), y = g(t), where t is a parameter, then dydx=g(t)f(t)

CALCULATION:

Given: x = a (θ + sin θ) and y = a (1 - cos θ)

Here, we have to find dydx

So, first we have to find dx/dθ and dy/dθ

⇒ dxdθ=a+a cos θ

⇒ dydθ=a sin θ

As we know that, if x = f(t), y = g(t), where t is a parameter, then dydx=g(t)f(t)

⇒ dydx=a sin θa(1+cos θ)=tan θ2

Hence, correct option is 1.

Differentiation of Parametric Functions Question 2:

Differentiate e1+x2 with respect to ln x

  1. 2x2e1+x2
  2. xe1+x2
  3. 2xe1+x2
  4. x2e1+x2

Answer (Detailed Solution Below)

Option 1 : 2x2e1+x2

Differentiation of Parametric Functions Question 2 Detailed Solution

Concept:

Parametric Form:

If f(x) and g(x) are the functions in x, then 

df(x)dg(x) = df(x)dxdg(x)dx 

Calculation:

Let f(x) = e1+x2 and g(x) = ln x

df(x)dx = e1+x2(2x)

df(x)dx = 2x e1+x2

Also

dg(x)dx = 1x

Now Differentiation of f(x) with respect to g(x) is 

df(x)dg(x) = df(x)dxdg(x)dx 

df(x)dg(x) = 2xe1+x21x

df(x)dg(x) = 2x2\boldsymbole1+x2

Differentiation of Parametric Functions Question 3:

If function f(x) = sin2 x - cos2 x and another function g(x) = 2tan x, then find the differentiation of f(x) with respect to g(x). 

  1. sin2 x cos
  2. sin 2x cos
  3. 2 sin x cos
  4. sin 2x cos 2x 

Answer (Detailed Solution Below)

Option 2 : sin 2x cos

Differentiation of Parametric Functions Question 3 Detailed Solution

Concept:

Parametric Form:

If f(x) and g(x) are the functions in x, then 

df(x)dg(x) = df(x)dxdg(x)dx 

 

Calculation:

Given f(x) = sin2 x - cos2 x and g(x) = 2 tan x

df(x)dx = 2 sin x cos x - 2 cos x (-sin x)

df(x)dx = 4 sin x cos x = 2 sin 2x

Also

dg(x)dx = 2 sec2 x

Now Differentiation of f(x) with respect to g(x) is 

df(x)dg(x) = df(x)dxdg(x)dx 

df(x)dg(x) = 2sin2x2sec2x

df(x)dg(x) = sin 2x cos

Differentiation of Parametric Functions Question 4:

Comprehension:

Directions: For the next two (02) items that follow:

Consider the curve x = a (cos θ + θ sin θ) and y = a (sin θ - θ cos θ)

What is d2ydx2 equal to?

  1. sec2θ
  2. -cosec2 θ
  3. sec3θaθ
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : sec3θaθ

Differentiation of Parametric Functions Question 4 Detailed Solution

Calculation:

We have, dy/dθ = a(θ sin θ ) and dx/dθ = a θ cos θ

dydx=tanθ

d2ydx2=ddx(dydx)

=ddθ(dydx)×dθdx

=ddθ(tanθ)×1aθcosθ

=sec2θ×secθaθ

=sec3θaθ

Hence, option (3) is correct.

Differentiation of Parametric Functions Question 5:

Find the value of dy/dx if x = cos t, y = sin t.

  1. -tan t
  2. -cot t
  3. cot t
  4. tan t

Answer (Detailed Solution Below)

Option 2 : -cot t

Differentiation of Parametric Functions Question 5 Detailed Solution

Explanation:

x = cos t 

Differentiating w.r.t. t, we get,

dxdt=sint

y = sin t

Differentiating w.r.t. t, we get,

dydt=cost

Thus, dydx=dydtdxdt

=costsint=cot t

Differentiation of Parametric Functions Question 6:

Derivative of x2 w.r.t. x3 is:

  1. 1x
  2. √x
  3. 0
  4. 23x

Answer (Detailed Solution Below)

Option 4 : 23x

Differentiation of Parametric Functions Question 6 Detailed Solution

Concept:

Chain Rule of Derivatives: For two functions u and v of x, we have: dudv=dudx×dxdv.

 

Calculation:

Using the chain rule of derivatives, we have:

dx2dx3=dx2dx×dxdx3

dx2dx×1dx3dx

2x3x2

23x

Differentiation of Parametric Functions Question 7:

Comprehension:

For the next three (3) items that follow:

Consider the parametric equation

x=a(1t2)1+t2,y=2at1+t2

What is d2ydx2 equal to?

  1. a2y2
  2. a2x2
  3. a2x2
  4. a2y3

Answer (Detailed Solution Below)

Option 4 : a2y3

Differentiation of Parametric Functions Question 7 Detailed Solution

Concept:

Using the Chain Rule: ddx[f(g(x))]=f(g(x))g(x)

d2ydx2=ddx(dydx)

 

Calculation:

d2ydx2=ddx(dydx)=ddx(xy)=xddx(1y)+1yddx(x)=x(1y2)dydx+(1y)

d2ydx2=xy2dydx1y

Replacingdydx=xyfrompreviousquestion

d2ydx2=xy2(xy)1y=x2y31y=x2+y2y3

Using equation of circle: x2 + y2 = a2

d2ydx2=a2y3

Differentiation of Parametric Functions Question 8:

Find dy/dx, if y = 3sin2 θ , x = 2 cos θ?

  1. 3x
  2. 6x
  3. 3x2
  4. 3x2

Answer (Detailed Solution Below)

Option 4 : 3x2

Differentiation of Parametric Functions Question 8 Detailed Solution

Concept:

Differentiation of parametric functions:

If x = f(t), y = g(t), where t is a parameter, then dydx=g(t)f(t)and dxdy=f(t)g(t)

Calculation:

Given function is y = 3sin2 θ , x = 2 cos θ ?

We differentiate the function with respect to θ first

⇒  dydθ=6sinθcosθ, dxdθ=2 sinθ

As we know that, if x = f(t), y = g(t), where t is a parameter, then dydx=g(t)f(t)and dxdy=f(t)g(t)

⇒ dydx=6sinθcosθ2sinθ

⇒ dydx=3cosθ

∵ x = 2cos θ ⇒ cosθ = x/2

⇒ dydx=3x2

Hence, option 4 is correct.

Differentiation of Parametric Functions Question 9:

If x=a(t1t),y=a(t+1t) where t be the parameter then dydx=?

  1. yx
  2. xy
  3. xy
  4. yx

Answer (Detailed Solution Below)

Option 3 : xy

Differentiation of Parametric Functions Question 9 Detailed Solution

Concept:

If x = f(t), y = f(t) where t be the parameter then to find dydx

Use chain rule dydx=dydtdxdt

Calculations:

Given, x=a(t1t),y=a(t+1t)

Here x = f(t), y = f(t).

To find dydx, use chain rule dydx=dydtdxdt....(1)

Now, x=a(t1t) and y=a(t+1t)

⇒ dxdt=a(1+1t2) and dydt=a(11t2)

Put these values in equation (1) 

dydx=dydtdxdt = a(11t2)a(1+1t2)

Multiply and divide the above equation by t.

dydx=at(11t2)at(1+1t2)

dydx=a(t1t)a(t+1t)

dydx=xy

 

Differentiation of Parametric Functions Question 10:

What is the derivative of f(tan x) w.r.t. g(sec x) at x = π4, if f'(1) = 2 and g'(√2) = 4?

  1. √2
  2. 12
  3. √3
  4. None of these.

Answer (Detailed Solution Below)

Option 2 : 12

Differentiation of Parametric Functions Question 10 Detailed Solution

Concept:

Derivatives of Trigonometric Functions:

ddxsinx=cosx             ddxcosx=sinxddxtanx=sec2x           ddxcotx=csc2xddxsecx=tanxsecx    ddxcscx=cotxcscx

Chain Rule of Derivatives:

  • ddxf(g(x))=dd g(x)f(g(x))×ddxg(x).
  • dydx=dydu×dudx.


Calculation:

Let v = f(tan x) and u = g(sec x).

Now, dvdx = f'(tan x).sec2 x and dudx = g'(sec x).tan x.sec x.

And dvdu=dvdx×dxdu=f(tanx).sec2xg(secx).tanx.secx=f(tanx).secxg(secx).tanx=f(tanx)g(secx).sinx

⇒ (dvdu)x=π4=f(tanπ4)g(secπ4).sinπ4

f(1)g(2).(12)

Substituting the given values f'(1) = 2 and g'(√2) = 4, we get:

(dvdu)x=π4=24(12)=22 = 1/√2.

Get Free Access Now
Hot Links: teen patti all yono teen patti teen patti bodhi