Functions of Several Variables MCQ Quiz in मल्याळम - Objective Question with Answer for Functions of Several Variables - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 23, 2025

നേടുക Functions of Several Variables ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Functions of Several Variables MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Functions of Several Variables MCQ Objective Questions

Top Functions of Several Variables MCQ Objective Questions

Functions of Several Variables Question 1:

Let f ∶ R2 → R be defined by f(x, y) = {2xyx2+y2,(x,y)(0,0)0,(x,y)=(0,0).

Define g(x, y) = n=1f((xn),(yn))2n.

Which of the following statements are true?

  1. The function h(y) = g(c, y) is continuous on R for all c
  2. g is continuous from R2 into R
  3. g is not a well-defined function
  4. g is continuous on R2\{(k, k)}k∈N

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 1 Detailed Solution

Explanation:

 f(x, y) = {2xyx2+y2,(x,y)(0,0)0,(x,y)=(0,0).

f(x, y) is not continuous at (0,0) as

 lim(x,y)(0,0)2xyx2+y2

limx02x.mxx2+m2x2 (along y = mx)

= 2m1+m2, which is not unique

g(x, y) = n=1f((xn),(yn))2n.

Now f(rcosθ,rsinθ)=2r2cosθsinθr2

= 2sinθcosθ = sin2θ  

so |f(xn,yn)|1n

|f(xn,yn)|2n12nn

Therefore Mn=12n which is a G.P. series with common ratio < 1. So n=1Mn is convergent. Then by Weierstrass's M-test g(x, y) = n=1f((xn),(yn))2n.converges uniformly on R.

 Now we will check the continuity of g(x,y)

 g(x, y) = n=1f((xn),(yn))2n

=f((x1),(y1))21+f((x2),(y2))22

+f((x3),(y3))23+...

 As f(x, y) is not continuous at (0,0), so g(x, y) is not continuous at (1,1),(2,2), (3,3),...
 

Therefore g(x,y) is continuous on R2\{(k,k)}kN

Option (4) is correct. 

Options (2) and (3) are incorrect.

h(y) = g(c,y)=f((c1),(y1))21+f((c2),(y2))22

+f((c3),(y3))23+...

if c ∈ N then if c = 1, h(y) = =0+f((1),(y2))22+f((2),(y3))23+... which is continuous. and similarly for any c ∈ N h(y) is continuous. 

If c ∉ N then also h(y) is continuous.

 The function h(y) = g(c, y) is continuous on R for all c.

∴ Option (1) and Option (4) are correct.

Functions of Several Variables Question 2:

If f(x, y) = |xy| find fx (0, 0), fy (0, 0)

  1. 0
  2. 2
  3. 6
  4. 4

Answer (Detailed Solution Below)

Option 1 : 0

Functions of Several Variables Question 2 Detailed Solution

Given:

 f(x, y) = |xy| 

Concept:

Apply definition of partial derivative .

Calculation:

 f(x, y) = |xy| 

Now,

fx(0,0)=limh0f(0+h,0)f(0,0)h=limh000h=0

And

fy(0,0)=limh0f(0,0+h)f(0,0)h=limh000h=0

Hence both partial derivative exists and equal to 0(zero) .

Functions of Several Variables Question 3:

Consider the function f : ℝ2 → ℝ defined by

f(x,y)=x13y13 (x, y ∈ ℝ).

Which of the following statements are true?

  1. The directional derivative of f exists at (0, 0) in some direction
  2. The partial derivative fx does not exist at (0, 0)
  3. f is continuous at (0, 0)
  4. f is not differentiable at (0, 0)

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 3 Detailed Solution

Concept:

A function of two variable f(x, y) is differentiable at (0, 0) if limh0||r(h,k)||||(h,k)|| = 0 where r(h, k) = f((0, 0)+(h, k))- f(0, 0) - (fx(0,0)fy(0,0))(hk)  

Explanation:

f(x,y)=x13y13

(1): Directional derivative at (0, 0) in the direction of U = (u, v) is

DU(0, 0) = limh0f((0,0)+h(u,v))f(0,0)h = limh0(hu)13(hv)13h = limh0u13v13h13 exist only if u = 0 or v = 0

(1) is correct

(2):  fx(0, 0) = limh0f(h,0)f(0,0)h = limh00h = 0

The partial derivative fx exists at (0, 0)

(2) is false

(3): lim(x,y)(0,0)f(x,y) 

lim(x,y)(0,0)x13y13 

limr0r23cos13θsin13θ (putting x = rcosθ, y = rsinθ)

= 0 = f(0, 0)

Hence f is continuous at (0, 0)

(3) is correct

(4): fy(0, 0) = limk0f(0,k)f(0,0)k = limk00k = 0

(fx(0,0)fy(0,0))(hk) = (00)(hk) = 0

So, r(h, k) = f((0, 0)+(h, k))- f(0, 0) - (fx(0,0)fy(0,0))(hk)  

               = f(h, k) - 0 - 0 = h13k13 

Now, limh0||r(h,k)||||(h,k)|| = lim(h,k)(0,0)h13k13h2+k2 

Putting h = r cosθ, k = r sinθ we get 

limr0r23cos13θsin13θr = limr0cos13θsin13θr13 does not exist 

Hence f is not differentiable at (0, 0).

(4) is correct

Functions of Several Variables Question 4:

A continuous function v : Rn → R is said to bev radially unbounded if ______________. 

  1. v(0) ≠ 0 
  2. v(0) =0
  3. v(0) = ∞
  4. v(0) = 1

Answer (Detailed Solution Below)

Option 2 : v(0) =0

Functions of Several Variables Question 4 Detailed Solution

Explanation:

it is common for many functions that are radially unbounded to also satisfy v(0) = 0,

especially in the field of machine learning and optimization, given that many loss/objective functions coincide with this property. 

Functions of Several Variables Question 5:

Let f:R2R  be defined by

f(x,y)={xy2x+y,if x+y00,if x+y=0

Then the value of 5(52fxy52fyx)  at the point (0,0) is

  1. 5
  2. -5
  3. 25
  4. -25

Answer (Detailed Solution Below)

Option 3 : 25

Functions of Several Variables Question 5 Detailed Solution

Concept:

fxy=limh0limk0F(h,k)hk

and

fyx=limk0limh0F(h,k)hk

where F(h, k) = f(h, k) - f(h,0) - f(0,k) + f(0,0).

Explanation: 

Since F(h, k) = f(h, k) - f(h,0) - f(0,k) + f(0,0)

Now,  F(h,k)=hk2h+k00+0=hk2h+k

fxy=limh0limk0hk2hk(h+k)

=limh0limk0kh+k

= 0

fyx=limk0limh0hk2hk(h+k)

=limk0kk

= 1

Therefore, 5(52fxy52fyx) = 5(5fxy5fyx)  at (0,0) = -5(0 -5 ×1) = 25

Hence Option(3) is the correct answer.

Functions of Several Variables Question 6:

Which of the following is/are Not True?

  1. (x+y)k2kmax(xk,yk) for all x, y>0 and all k 1.
  2. sinx+y2(sinx+siny)2 for all x, y>0
  3. e(x+y2)ex+ey2 for all x,y>0 
  4. logx+y2logx+logy2 for all x, y>0

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 6 Detailed Solution

Concept:

 Arithmetic Mean  Geometric Mean

A.M  G.M

Explanation:

Option(1): (x+y)k2kmax(xk,yk) for all x, y>0 and all k 1.

For k=1

(x+y)2<max(x,y)

Let for k=t

(x+y)t2tmax(xt,yt) holds.

For k = t+1

LHS: (x+y)t+12t+1 = (x+y)t2t (x+y)2 max(xt,yt)max(x,y)  max(xt+1,yt+1) =RHS

Hence : (x+y)k2kmax(xk,yk) for all x, y>0 is true by Principal of mathematical induction.

so, Option(1) is correct.

Option(2): 

sinx+y2(sinx+siny)2 for all x, y>0

this does not hold for x= π6 and  y= π3.

LHS: sin π = 0 & RHS:  3+1

So, Option (2) is not correct.

Option(3):

Arithmetic mean for ex and  ey=  ex+ey2

Geometric mean for ex and  ey=  exey

since A.M  G.M

so, ex+ey2exey

Option(3) is correct.

Option(4):

Arithmetic mean for logx and  logy = logx+logy2

Geometric mean for logx and  logy = logxlogy = 12log(x+y)

since A.M  G.M

logx+logy212log(x+y)

Option(4) is not correct.

Hence Option(2) and Option(4) are Answers.

Functions of Several Variables Question 7:

Consider the function f : ℝ→ ℝ defined by

f(x,y)={(x+y)2cos1x+y if xy0 if x=y.

Which of the following statements are true?

  1. The partial derivative fx exist at (0, 0).
  2. The partial derivative fx is continuous at (0, 0).
  3. The partial derivative fy exist at (0, 0).
  4. The partial derivative fy is continuous at (0, 0).

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 7 Detailed Solution

Explanation:

f(x,y)={(x+y)2cos1x+y if xy0 if x=y.

 

(1): fx(0, 0) = limh0f(h,0)f(0,0)h = limh0h2cos1h0h = limh0hcos1h = 0

So, the partial derivative fx exist at (0, 0).

(1) is true

(3): fy(0, 0) = limk0f(0,k)f(0,0)k = limk0k2cos1k0k = limk0kcos1k = 0

So, the partial derivative fy exist at (0, 0).

(3) is true.

(3): fx(x, y) = {2(x+y)cos1x+y(x+y)2sin1x+y(1(x+y)2) if xy0 if x=y.

                 = {2(x+y)cos1x+y+sin1x+y if xy0 if x=y.

Now, lim(x,y)(0,0)fx(x,y) = lim(x,y)(0,0)(2(x+y)cos1x+y+sin1x+y) does not exist as lim(x,y)(0,0)sin1x+y does not exist

Hence the partial derivative fx is not continuous at (0, 0).

(2) is false

(4): fy(x, y) = {2(x+y)cos1x+y(x+y)2sin1x+y(1(x+y)2) if xy0 if x=y.

                 = {2(x+y)cos1x+y+sin1x+y if xy0 if x=y.

Now, lim(x,y)(0,0)fy(x,y) = lim(x,y)(0,0)(2(x+y)cos1x+y+sin1x+y) does not exist as lim(x,y)(0,0)sin1x+y does not exist

Hence the partial derivative fy is not continuous at (0, 0).

(4) is false.

Functions of Several Variables Question 8:

Consider the functions f(x,y)=x2+y2  and g(x, y) = x + y defined onR2. Suppose we are restricted to the constraint g(x, y) = 1 .

Which of the following statements is true?

  1. The function f has no global extreme value subject to the constraint g(x, y) = 1 .  
  2. The function f has global extreme values at the points where x=±1,y=0orx=0,y=±1.  
  3.  The function g has no global extreme value subject to the constraint f(x, y) = 1 .  
  4.  The function g has a global extreme value at (0, 1) subject to the constraint f(x, y) = 1 .

Answer (Detailed Solution Below)

Option 2 : The function f has global extreme values at the points where x=±1,y=0orx=0,y=±1.  

Functions of Several Variables Question 8 Detailed Solution

Explanation:

The constraint g(x, y) = 1 represents the line x + y = 1 .

Substituting y = 1 x into f(x,y)=x2+y2 , we get:

f(x,1x)=x2+(1x)2=2x22x+1.
 
To find the extrema,

we compute the derivative of f(x, 1 x) :

ddx(2x22x+1)=4x2.
 
Setting the derivative to zero:

4x2=0x=12.
 
Substituting  x=12  into y = 1 x , then  y=12 .

The minimum value of f(x, y) occurs at (x, y) = (12,12) ,

 

Determine if This is a Minimum or Maximum: 

the second derivative of f(x, 1 x) :

d2dx2(2x22x+1)=4

Since the second derivative is positive. 

The function f(x, 1 x) has a local minimum at x =12, and hence a global minimum on the constraint line x + y = 1 .

Substitute x = 12  into f(x, 1 x) to find the minimum value:

f(12,12)=2(12)22(12)+1=121+1=12

Thus, the minimum value of f(x, y) subject to the constraint g(x, y) = 1 is 12  ,

and it occurs at(12,12).

Check the Behavior at Boundary Points

We now check the behavior of f(x, y) at some boundary points where g(x, y) = 1 .

When x = 1 , we get y = 0 , so:

f(1, 0) = 12+02 = 1

When x = 0 , we get y = 1 , so:

f(0, 1) = 02+12 = 1

These values are larger than the minimum value of 12 at (12,12) ,

confirming that the minimum occurs at (12,12) .

⇒ The function f has global extreme values at the points where  x=±1,y=0  or  x=0,y=±1 .

Hence Option(2) is the correct Answer. 

Functions of Several Variables Question 9:

Define f: ℝ2 → ℝ by f(x,y)={yx2+y2xif x0 0,if x=0 

Which of the following statements are true? 

  1. fx(0,0) exists
  2. fy(0,0) exists
  3. f is not continuous at (0,0) 
  4. f is not differentiable at (0, 0)

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 9 Detailed Solution

Concept:

fx(0,0)=limh0f(h,0)f(0,0)h

and fy(0,0)=limh0f(0,h)f(0,0)h

Explanation:

We are given the function f:R2R , defined as

f(x,y)={yx2+y2x,if x00,if x=0

We are tasked with determining the truth of various statements about the

partial derivatives, continuity, and differentiability of this function at (0, 0) .

Option 1: To check whether the partial derivative with respect to x exists at (0, 0) ,

we calculate it as follows

fx(0,0)=limh0f(h,0)f(0,0)h

When y = 0 , the function reduces to

f(x,0)=0for allx0

Thus, fx(0,0)=limh000h=0

Hence, fx(0,0) exists and is equal to 0.

Option 2: We calculate the partial derivative with respect to y at (0, 0)

using the limit definition:

fy(0,0)=limh0f(0,h)f(0,0)h

When x = 0 , the function is defined as f(0, y) = 0 . Thus,

fy(0,0)=limh000h=0

Therefore, fy(0,0) also exists and is equal to 0.

Option 3: Along x = my2 

lim(x,y)(0,0)yx2+y2x = limy0ym2y4+y2my2

                                = limy0y2m2y2+1my2 = 1/m which is different for different value of m

Thus, f is not continuous at (0, 0) .

Option 4: A function is differentiable at (0, 0) if it is continuous and its partial derivatives exist and

are continuous in a neighborhood of (0, 0) . Since the function is not continuous at (0, 0) , it cannot

be differentiable there. Thus, f is not differentiable at (0, 0) .

Hence correct options are 1), 2), 3) and 4).

Functions of Several Variables Question 10:

Consider the function f : ℝ→ ℝ defined by

f(x,y)={(xy)2sin1xy if xy0 if x=y.

Which of the following statements are true?

  1. f is continuous at (0, 0).
  2. The partial derivative fx does not exist at (0, 0).
  3. The partial derivative fx is continuous at (0, 0).
  4. f is differentiable at (0, 0).

Answer (Detailed Solution Below)

Option :

Functions of Several Variables Question 10 Detailed Solution

Concept:

A function of two variable f(x, y) is differentiable at (0, 0) if limh0||r(h,k)||||(h,k)|| = 0 where r(h, k) = f((0, 0)+(h, k))- f(0, 0) - (fx(0,0)fy(0,0))(hk)  

 Explanation:

f(x,y)={(xy)2sin1xy if xy0 if x=y.

(1): The function f(x, y) is continuous if lim(x,y)(0,0)f(x,y) = f(0, 0)

lim(x,y)(0,0)f(x,y) = lim(x,y)(0,0)(xy)2sin1xy  

                             = limr0r2(cosθsinθ)2sin1r(cosθsinθ) = 0 = f(0, 0)

  (putting x = r cosθ, y = r sinθ )

Hence f(x, y) is continuous  at (0, 0)

(1) is correct

(2): fx(0, 0) = limh0f(h,0)f(0,0)h = limh0h2sin1h0h = limh0hsin1h = 0

So, the partial derivative fx exist at (0, 0).

(2) is false

(3): fx(x, y) = {2(xy)sin1xy+(xy)2cos1xy(1(xy)2) if xy0 if x=y.

                 = {2(xy)sin1xycos1xy if xy0 if x=y.

Now, lim(x,y)(0,0)fx(x,y) = lim(x,y)(0,0)(2(xy)sin1xycos1xy) does not exist as lim(x,y)(0,0)cos1xy does not exist

Hence the partial derivative fx is not continuous at (0, 0).

(3) is false

(4): fy(0, 0) = limk0f(0,k)f(0,0)k = limk0k2sin1k0k = limk0ksin1k = 0

(fx(0,0)fy(0,0))(hk) = (00)(hk) = 0

So, r(h, k) = f((0, 0)+(h, k))- f(0, 0) - (fx(0,0)fy(0,0))(hk)  

               = f(h, k) - 0 - 0 = (hk)2sin1hk 

Now, limh0||r(h,k)||||(h,k)|| = lim(h,k)(0,0)(hk)2sin1hkh2+k2 

Putting h = r cosθ, k = r sinθ we get 

limr0r2(cosθsinθ)2sin1r(cosθsinθ)r = 0

Hence f is differentiable at (0, 0).

(4) is correct

Get Free Access Now
Hot Links: teen patti list teen patti joy official teen patti gold teen patti gold real cash teen patti gold online