Integration by Parts MCQ Quiz in मल्याळम - Objective Question with Answer for Integration by Parts - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 17, 2025

നേടുക Integration by Parts ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Integration by Parts MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Integration by Parts MCQ Objective Questions

Top Integration by Parts MCQ Objective Questions

Integration by Parts Question 1:

Evaluate: \(\rm\int x\sin x\ dx\)

  1. cos x + x cos x + C
  2. sin x - x cos x + C
  3. sin x - x sin x + C
  4. cos x - x cos x + C

Answer (Detailed Solution Below)

Option 2 : sin x - x cos x + C

Integration by Parts Question 1 Detailed Solution

Concept:

Calculus:

Derivatives of Trigonometric Functions:

\(\rm \frac{d}{dx}\sin x=\cos x\ \ \ \ \ \frac{d}{dx}\cos x=-\sin x\) 

\(\rm \frac{d}{dx}\tan x=\sec^2x\ \ \ \ \ \ \frac{d}{dx}\cot x=-\csc^2 x\)

\(\rm \frac{d}{dx}\sec x=\tan x\sec x\ \ \ \frac{d}{dx}\csc x=-\cot x\csc x\)

Integration by Parts:

∫ f(x) g(x) dx = f(x) ∫ g(x) dx - ∫ [f'(x) ∫ g(x) dx] dx.

Calculation:

Let I = \(\rm\int x\sin x\ dx\).

Considering x as the first function and sin x as the second function, we get:

⇒ I = x ∫ sin x dx - ∫ [(1) ∫ sin dx] dx

⇒ I = x (-cos x) - ∫ (-cos x) dx

⇒ I = sin x - x cos x + C.

Integration by Parts Question 2:

∫ ex cos x dx = 

  1. \(\rm {e^x \cos x - e^x \sin x\over 2}\)
  2. \(\rm {-e^x \cos x -e^x \sin x\over 2}\)
  3. \(\rm {-e^x \cos x +e^x \sin x\over 2}\)
  4. \(\rm {e^x \cos x + e^x \sin x\over 2}\)
  5. \(\rm {e^x \cos x + e^{-x} \sin x\over 2}\)

Answer (Detailed Solution Below)

Option 4 : \(\rm {e^x \cos x + e^x \sin x\over 2}\)

Integration by Parts Question 2 Detailed Solution

Concept:

Integration by parts: Integration by parts is a method to find integrals of products.

The formula for integrating by parts is given by:

⇒ \(\rm ∫ u vdx=u ∫ vdx- ∫ \left({du\over dx}\times ∫ vdx\right)dx \) + C

where u is the function u(x) and v is the function v(x) 

ILATE rule is Usually, the preference order of this rule is based on some functions such as Inverse, Logarithm, Algebraic, Trigonometric and Exponent.

 

Calculation:

I = ∫ ecos x dx

Integrating by ILATE rule,

I = cos x ∫ ex dx - ∫ (-sin x ∫ ex dx) dx

I = ex cos x + ∫ ex sin x dx

I = ex cos x + sin x ∫ ex dx - ∫ (cos x ∫ ex dx) dx

I = ex cos x + ex sin x - ∫ ecos x dx

I = ex cos x + ex sin x - I

2I = ex cos x + ex sin x

I = \(\boldsymbol{\rm {e^x \cos x + e^x \sin x\over 2}}\)

Integration by Parts Question 3:

Evaluate: \(\smallint {x}{e^{3x}}\;dx\)

  1. \(\frac{{{e^{2x}} \cdot \left( {2x + 1} \right)}}{8} + C\)
  2. \(\frac{{{e^{2x}} \cdot \left( {2x - 1} \right)}}{8} + C\)
  3. \(\frac{{{e^{3x}} \cdot \left( {3x + 1} \right)}}{9} + C\)
  4. \(\frac{{{e^{3x}} \cdot \left( {3x - 1} \right)}}{9} + C\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{{{e^{3x}} \cdot \left( {3x - 1} \right)}}{9} + C\)

Integration by Parts Question 3 Detailed Solution

Concept:

  • \(\smallint {e^{ax}}\;dx = \frac{{{e^{ax}}}}{a} + C\) where C is a constant

Integration by parts:

The formula for integrating by parts is given by;

\( \Rightarrow {\rm{}}\smallint {\rm{u\;vdx}} = {\rm{u\;}}\smallint {\rm{vdx}} - {\rm{\;}}\smallint \left( {\frac{{{\rm{du}}}}{{{\rm{dx}}}}{\rm{\;}}\smallint {\rm{vdx}}} \right){\rm{dx}}\)

Where u is the function u(x) and v is the function v(x)

  • ILATE Rule: Usually, the preference order of this rule is based on some functions such as Inverse, Logarithm, Algebraic, Trigonometric and Exponent.

Calculation:

Here, we have to find the value of \(\smallint {x}{e^{3x}}\;dx\)

According to the integration by parts (ILATE Rule) we have: x as our first function and e3x as our second function

i.e u(x) = x and v(x) = e3x

As we know that, \({\rm{}}\smallint {\rm{u\;vdx}} = {\rm{u\;}}\smallint {\rm{vdx}} - {\rm{\;}}\smallint \left( {\frac{{{\rm{du}}}}{{{\rm{dx}}}}{\rm{\;}}\smallint {\rm{vdx}}} \right){\rm{dx}}\)

\(\Rightarrow \smallint x{e^{3x}}\;dx = x \cdot \smallint {e^{3x}}\;dx - \;\smallint \left\{ {\frac{{d\left( x \right)}}{{dx}} \cdot \;\smallint {e^{3x}}\;dx} \right\}dx\)

As we know that, \(\smallint {e^{ax}}\;dx = \frac{{{e^{ax}}}}{a} + C\) where C is a constant

\(\Rightarrow \smallint x{e^{3x}}\;dx = x \cdot \frac{{{e^{3x}}}}{3} - \;\smallint \left[ {1 \cdot \frac{{{e^{3x}}}}{3}} \right]dx\)

As we know that, \(\smallint {e^{ax}}\;dx = \frac{{{e^{ax}}}}{a} + C\) where C is a constant

\(\Rightarrow \smallint x{e^{3x}}\;dx = \frac{{{e^{3x}} \cdot \left( {3x - 1} \right)}}{9} + C\)

Integration by Parts Question 4:

The value of the integral \(\int_0^{1.5} {\left[ {{x^2}} \right]} dx\), where [x] denotes the greatest integer ≤

  1. 2 + √2
  2. 2 - √2
  3. 0
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 2 - √2

Integration by Parts Question 4 Detailed Solution

Concept:

Greatest Integer Function [X]: It indicates an integral part of the real number x  which is the nearest and smaller integer to x. It is also known as the floor of X.
[x] = The largest integer that is less than or equal to x.

X          [X]
0 ≤ x < 1  0
0 ≤ x < 1 1
0 ≤ x < 1

2

 

Calculation:

\(Let,\ \ I\ = \ \int_0^{1.5} {\left[ {{x^2}} \right]} dx\)

\(⇒ \ I\ = \int_0^1 [x^2]dx +\int_1^{√{2}} [x^2] dx + \int_{√{2}}^{1.5} [x^2]dx\)

\(⇒ \ I\ =\displaystyle\int_0^1 0 \cdot dx + \int_1^{√{2}} 1 \cdot dx + \int_{√{2}}^{1.5} 2 \cdot dx\)

\(⇒ \ I\ =0 + (√{2}-1)+2 (1.5 -√{2}) \)

⇒ I = 2 - √2

Hence, the value of the integral is  2 - √2.

Integration by Parts Question 5:

Solve ∫ (x ln x) dx

  1.  \(\rm {x^2\ln x\over2}-\) \(\rm {x^2\over2}\)
  2.  \(\rm {x^2\ln x\over2}- {x^2\over4} +C\)
  3. \(\rm {x^2\ln x\over2}\) + C
  4. \(\rm {x^2\over2}\) + C

Answer (Detailed Solution Below)

Option 2 :  \(\rm {x^2\ln x\over2}- {x^2\over4} +C\)

Integration by Parts Question 5 Detailed Solution

Concept:

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm∫ {1\over x} dx = \ln x\) + C
  • ∫ edx = ex+ C
  • ∫ adx = (ax/ln a) + C ; a > 0,  a ≠ 1
  • ∫ sin x dx = - cos x + C
  • ∫ cos x dx = sin x + C

 

Integration by parts: Integration by parts is a method to find integrals of products. The formula for integrating by parts is given by:

⇒ \(\rm ∫ u vdx=u ∫ vdx- ∫ \left({du\over dx}\times \int vdx\right)dx \) + C

where u is the function u(x) and v is the function v(x) 

ILATE rule is Usually, the preference order of this rule is based on some functions such as Inverse, Logarithm, Algebraic, Trigonometric and Exponent.

 

Calculation:

I = ∫ (x ln x) dx

Using integration by parts

⇒ I = ln x ∫ x dx - ∫ \(\rm \left({d\ln x\over dx}\times \int xdx\right)\) dx + C

⇒ I = \(\rm {x^2\over2}\) ln x - ∫ \(\rm \left({1\over x}\times{x^2\over2}\right)\) dx + C

⇒ I = \(\rm {x^2\over2}\) ln x - ∫ \(\rm {x\over2}\) dx + C

⇒ I = \(\boldsymbol{\rm {x^2\ln x\over2}-}\) \(\boldsymbol{\rm {x^2\over4}}\) + C

Integration by Parts Question 6:

\(\int_0^3 {\left| {1 - x} \right|} \,{\rm{dx}}\) equals

  1. 1/2
  2. 3/2
  3. 5/2
  4. 7/2

Answer (Detailed Solution Below)

Option 3 : 5/2

Integration by Parts Question 6 Detailed Solution

Given:

The given integral is \(\int_0^3 {\left| {1 - x} \right|} \,{\rm{dx}}\)

Formula Used:

\(\int x^n dx = \frac{x^{n \ + \ 1}}{n \ + \ 1}\)

Calculation:

We have,

⇒ I = \(\int_0^3 {\left| {1 - x} \right|} \,{\rm{dx}}\)

Now |1 - x| = 1 - x  for 1 - x ≥ 0 ⇒1 ≥ x and   

 |1 - x| = - (1 - x)  for 1 - x < 0 ⇒1 < x

⇒ I = \(\int_0^1 {\left| {1 - x} \right|} \,{\rm{dx}} + \int_1^3 {\left| {1 - x} \right|} \,{\rm{dx}}\)

⇒ I = \(\int_0^1 { {(1 - x)} } \,{\rm{dx}} \ - \ \int_1^3 { {(1 - x)} } \,{\rm{dx}}\)

⇒ I = \(\left[ x - \frac{x^2}{2} \right]_0^1 - \left[x - \frac{x^2}{2} \right]_1^3\)

⇒ I = \(1 - \frac{1}{2} - \left[ 3 - \frac{9}{2} - 1 + \frac{1}{2} \right]\)

⇒ I = \(1 - \frac{1}{2} - 3 + \frac{9}{2} + 1 - \frac{1}{2}\)

⇒ I = \(2 - 1 - 3 + \frac{9}{2}\)

⇒ I = \(- 2 + \frac{9}{2}\)

⇒ I = \(\frac{5}{2}\)

 \(1 - \frac{1}{2} - \left[ 3 - \frac{9}{2} - 1 + \frac{1}{2} \right]\) equals to \(\frac{5}{2}\)

Integration by Parts Question 7:

If \(\displaystyle\int_0^1 \dfrac{e^t}{1+t}dt=a\), then \(\displaystyle\int_0^1 \dfrac{e^t}{(1+t)^2}dt=\)

  1. \(a-1+\dfrac{e}{2}\)
  2. \(a+1+\dfrac{e}{2}\)
  3. \(a-1-\dfrac{e}{2}\)
  4. \(a+1-\dfrac{e}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(a+1-\dfrac{e}{2}\)

Integration by Parts Question 7 Detailed Solution

Explanation:

Given Integral is,

\(\displaystyle∫_0^1 \dfrac{e^t}{1+t}dt=a\)

Considering \(I_1 ~=~\frac{1}{1+t}\) and \(I_2 ~=~e^t \)

Hence by Integration by parts we know that,

∫ [I1][ I2 ] dt = I1∫ I2 dt - ∫ [I'1∫ I2 dt]dt

\(\frac{1}{1+t}\int_0^1 e^t dt-\int_0 ^1 [\frac{d}{dt}(\frac{1}{1+t}).\int_0 ^1 e^t dt]dt~=~a\)

\(\frac{1}{1+t}[e^t ]_0^1-\int_0^1 (\frac{-1}{(1+t)^2}).e^t dt~=~a\)

\([\frac{e^t}{1+t}]_0^1 +\int_0^1 \frac{e^t}{(1+t)^2}dt~=~a\)

\(\int_0^1 \frac{e^t}{(1+t)^2}dt~=~a-[\frac{e^t}{1+t}]_0^1\)

\(\int_0^1 \frac{e^t}{(1+t)^2}dt~=~a-[\frac{e^1}{1+1}-\frac{e^0}{1+0}]\)

\(\int_0^1 \frac{e^t}{(1+t)^2}dt~=~a-[\frac{e}{2}-1]\)

\(\displaystyle\int_0^1 \dfrac{e^t}{(1+t)^2}dt~=~a+1-\frac{e}{2}\)

Integration by Parts Question 8:

What is ∫ (elog x + sin x) cos x dx equal to?

  1. \(\rm \sin x + x \cos x + \dfrac{\sin^2 x}{2}+c\)
  2. \(\rm \sin x - x \cos x + \dfrac{\sin^2 x}{2}+c\)
  3. \(\rm x \sin x + \cos x + \dfrac{\sin^2 x}{2}+c\)
  4. \(\rm x \sin x - x \cos x + \dfrac{\sin^2 x}{2}+c\)

Answer (Detailed Solution Below)

Option 3 : \(\rm x \sin x + \cos x + \dfrac{\sin^2 x}{2}+c\)

Integration by Parts Question 8 Detailed Solution

Concept:

1. Integration by parts: 

Integration by parts is a method to find integrals of products

The formula for integrating by parts is given by;

\(⇒ \smallint {\rm{u\;vdx}} = {\rm{u\;}}\smallint {\rm{vdx}} - {\rm{\;}}\smallint \left( {\frac{{{\rm{du}}}}{{{\rm{dx}}}}{\rm{\;}}\smallint {\rm{vdx}}} \right){\rm{dx}}\)

Where u is the function u(x) and v is the function v(x)

2. ILATE Rule: 

Usually, the preference order of this rule is based on some functions such as Inverse, Logarithm, Algebraic, Trigonometric and Exponent.

 

Calculation:

Let I = ∫ (elog x + sin x) cos x dx

\(⇒\rm \int (x \cos x + \sin x \cos x) dx\)        (∵ elog x = x)

\(⇒ \rm \int x\cos x \;dx + \int \sin x \cos x\;dx\)

⇒ I = I1 + I2               .... (1)

 

Now, I1 = \(\rm \int x\cos x \;dx\)

Applying by parts, we get

\(⇒ {\rm{x\;}}\smallint {\rm{\cos x\;dx}} - {\rm{\;}}\smallint \left( {\frac{{{\rm{dx}}}}{{{\rm{dx}}}}{\rm{\;}}\smallint {\rm{\cos x\;dx}}} \right){\rm{dx}} \)

⇒ x sin x - \(\rm \int \sin x \;dx \) + c

⇒ x sin x + cos x + c

Now, I2 = \(\rm \int \sin x \cos x\;dx\)

Let sin x = t

Differentiating with respect to x, we get

⇒ cos x dx = dt

⇒ I2 = \(\rm \int tdt = \frac{t^2}{2} + c\)

⇒ \(\rm \frac{\sin^2 x}{2} + c\)

Put the value of I1 and I2 in equation (1), we get

∴ The required integral (I) is \(\rm x \sin x + \cos x + \dfrac{\sin^2 x}{2}+c\).

Integration by Parts Question 9:

Find the value of \(\smallint \frac{{x \cdot {e^x}}}{{{{\left( {1 + x} \right)}^2}}}dx\)

  1. \(\frac{{{e^x}}}{{1 + x}^2} + C\)
  2. \(\frac{{{e^x}}}{{1 + x}} + C\)
  3. \(- \ \frac{{{e^x}}}{{1 + x}} + C\)
  4. \(- \ \frac{{{e^x}}}{{1 + x}^2} + C\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{{{e^x}}}{{1 + x}} + C\)

Integration by Parts Question 9 Detailed Solution

Concept:

  • \(\smallint {e^x} \cdot \left[ {f\left( x \right) + f'\left( x \right)} \right]\;dx = {e^x} \cdot f\left( x \right) + C\) where C is a constant
  • \(\frac{{d\left( {{x^n}} \right)}}{{dx}} = n \cdot {x^{n - 1}}\)

Calculation:

Here we have to find the value of \(\smallint \frac{{x \cdot {e^x}}}{{{{\left( {1 + x} \right)}^2}}}dx\)

Now the given integral can be re-written as:

\(\Rightarrow \smallint \frac{{x \cdot {e^x}}}{{{{\left( {1 + x} \right)}^2}}}dx = \;\smallint {e^x} \cdot \left\{ {\frac{{\left( {1 + x} \right) - 1}}{{{{\left( {1 + x} \right)}^2}}}} \right\}dx\)

\(\Rightarrow \smallint {e^x} \cdot \left\{ {\frac{{\left( {1 + x} \right) - 1}}{{{{\left( {1 + x} \right)}^2}}}} \right\}dx = \;\smallint {e^x} \cdot \left\{ {\frac{1}{{1 + x}} - \frac{1}{{{{\left( {1 + x} \right)}^2}}}} \right\} dx\)

Now by comparing the above equation with \(\smallint {e^x} \cdot \left[ {f\left( x \right) + f'\left( x \right)} \right]\;dx\) we get

\(f\left( x \right) = \;\frac{1}{{1 + x}}\;\;and\;f'\left( x \right) = \;\frac{1}{{{{\left( {1 + x} \right)}^2}}}\)

As we know that, \(\smallint {e^x} \cdot \left[ {f\left( x \right) + f'\left( x \right)} \right]\;dx = {e^x} \cdot f\left( x \right) + C\) where C is a constant

\(\Rightarrow \smallint \frac{{x \cdot {e^x}}}{{{{\left( {1 + x} \right)}^2}}}dx = \frac{{{e^x}}}{{1 + x}} + C\) where C is a constant

Integration by Parts Question 10:

What is \(\rm \displaystyle\int e^{\log x} \sin x \ dx\) equal to ?

  1. elog x (sin x - cos x) + C
  2. (sin x - x cos x) + C
  3. (x sin x + cos x) + C
  4. (sin x + x cos x) - C

Answer (Detailed Solution Below)

Option 2 : (sin x - x cos x) + C

Integration by Parts Question 10 Detailed Solution

Concept:

Integration by parts

Integration by parts is used to integrate the product of two or more functions. The two functions

to be integrated f(x) and g(x) are of the form \(\rm \displaystyle\int \)f(x).g(x). Thus, it can be called a product rule of

integration. Among the two functions, the first function f(x) is selected such that its derivative

formula exists, and the second function g(x) is chosen such that an integral of such a function exists.

\(\rm \displaystyle\int \)f(x).g(x).dx = f(x)\(\rm \displaystyle\int \)g(x).dx−\(\rm \displaystyle\int \big[\)f′(x)\(\rm \displaystyle\int \)g(x).dx\(\big]\).dx + C

A useful rule of integral by parts is ILATE.

I: Inverse trigonometric functions : sin-1(x), cos-1(x), tan-1(x)

L: Logarithmic functions : ln(x), log(x)

A: Algebraic functions : x2, x3

T: Trigonometric functions : sin(x), cos(x), tan (x)

E: Exponential functions : ex, 3x

Properties of logarithms

\(\rm \displaystyle e^{\log_e x}\) = x

Let y = \(\rm \displaystyle e^{\log x}\)

Taking log both sides,

⇒ log y = log \(\rm \displaystyle e^{\log x}\)

⇒ log y = log x log e

⇒ log y = log x

⇒ y = x

Calculation:

I = \(\rm \displaystyle\int e^{\log x} \sin x \ dx\) 

⇒ I = \(\rm \displaystyle\int \)x sin x dx

Taking x as the first function and sin x as the second function and integrating by parts, we get,

⇒ I = x\(\rm \displaystyle\int \)sin x dx − \(\rm \displaystyle\int \big[\big(\frac{d(x)}{dx}\big) \)\(\rm \displaystyle\int \)sin x dx\(\big]\)dx

⇒ I = x (− cos x) − \(\rm \displaystyle\int \)1.(−cos x) dx

⇒ I = −x cos x + sin x + C

∴ The value of \(\rm \displaystyle\int e^{\log x} \sin x \ dx\) is (sin x - x cos x) + C

Get Free Access Now
Hot Links: teen patti all game teen patti - 3patti cards game teen patti master downloadable content teen patti gold download apk