Maxima & Minima MCQ Quiz in मल्याळम - Objective Question with Answer for Maxima & Minima - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 9, 2025

നേടുക Maxima & Minima ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Maxima & Minima MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Maxima & Minima MCQ Objective Questions

Top Maxima & Minima MCQ Objective Questions

Maxima & Minima Question 1:

If f(x) = min (4x + 3, x + 4) for x ϵ [0, 3], what is the maximum value of f(x)?

  1. 7
  2. 15
  3. 3
  4. 6

Answer (Detailed Solution Below)

Option 1 : 7

Maxima & Minima Question 1 Detailed Solution

Concept:

A function f(x) is called increasing on an interval I if given any two numbers, x1, and x2 in I such that x1 < x2, we have f(x1) < f(x2).

Similarly, function f(x) is called decreasing on an interval if given any two numbers, x1, and x2 in I such that x1 < x2, we have f(x1) > f(x2).

Calculation:

Here f(x) = min (4x + 3, x + 4) is an increasing function for every x ϵ [0, 3]

It means the value of f(x) increases as x increases.

∴ At x = 3, f(x) will be maximum

⇒ f(x) max = min (4 × 3 + 3, 3 + 4)

⇒ f(x) max = min (15, 7)

⇒ f(x) max = 7

Hence the maximum value of the function is 7.

Maxima & Minima Question 2:

The maximum value of function f(x, y) = x3 y2 (1 - x - y) for x, y ϵ (0, ∞) is

  1. 1
  2. 1 / 108
  3. 1 / 216
  4. 1 / 432

Answer (Detailed Solution Below)

Option 4 : 1 / 432

Maxima & Minima Question 2 Detailed Solution

Explanation:

f(x, y) = x3y2 (1 - x - y)

\(\frac{{\partial f}}{{\partial x}} = 3{x^2}{y^2} - 4{x^3}{y^2} - 3{x^2}{y^3}\)

\(\frac{{\partial f}}{{\partial y}} = 2{x^3}y - 2{x^4}y - 3{x^3}{y^2}\)

\(\frac{{{\partial ^2}f}}{{\partial {x^2}}} = r = 6x{y^2} - 12{x^2}{y^2} - 6x{y^3}\)

\(\frac{{{\partial ^2}f}}{{\partial x \cdot \partial y}} = s = 6{x^2}y - 8{x^3}y - 9{x^2}{y^2}\)

\(\frac{{{\partial ^2}f}}{{\partial {y^2}}} = t = 2{x^3} - 2{x^4} - 6{x^3}y\)

Now,

Put \(\frac{{\partial f}}{{\partial x}} = 0,\) we get x2y2 (3 - 4x - 3y) = 0

\(\frac{{\partial f}}{{\partial y}} = 0,\)

We get x3y (2 - 2x - 3y) = 0

Solving these two, we get stationary points \( \to \left( {\frac{1}{2},\frac{1}{3}} \right)\;\& \;\left( {0,\;0} \right)\) 

Now,

rt - s2 = x4y2 [12 (1 - 2x - y)(1 - x - 3y) - (6 - 8x - 9y)2]

Since x, y ϵ (0, ∞)

Thus, for \(\left( {\frac{1}{2},\frac{1}{3}} \right)\) 

\(rt - {s^2} = \frac{1}{{16}}\frac{1}{9}\left[ {12\left( { - \frac{1}{3}} \right)\left( { - \frac{1}{2}} \right) - {{\left( {6 - 4 - 3} \right)}^2}} \right]\) 

\(rt - {s^2} = \frac{1}{{14}} > 0\)

\(\& \;r = 6\left( {\frac{1}{2} \cdot \frac{1}{9} - \frac{2}{4} \cdot \frac{1}{9} - \frac{1}{2} \cdot \frac{1}{{27}}} \right) = - \frac{1}{9} < 0\)

Hence, f(x, y) has a maxima at \(\left( {\frac{1}{2},\frac{1}{3}} \right)\) 

\(\therefore {\rm{Maximum\;value}} = \frac{1}{8} \cdot \frac{1}{9}\left( {1 - \frac{1}{2} - \frac{1}{3}} \right) = \frac{1}{{432}}\)

Maxima & Minima Question 3:

For a right-angled triangle, if the sum of the lengths of the hypotenuse and a side is kept constant, in order to have a maximum area of the triangle, the angle between the hypotenuse and the side is

  1. 12°
  2. 36°
  3. 60°
  4. 45°

Answer (Detailed Solution Below)

Option 3 : 60°

Maxima & Minima Question 3 Detailed Solution

F4 S.B Madhu 30.07.20 D11

h2 = a2 + b2 [Pythagoras theorem for right-angled triangle]

Given a + h = constant

Let it be K, i.e.

a + h = K

Area of triangle is given by:

\(A = \frac{1}{2} \times a \times b\) 

\(A = \frac{1}{2} \times a \times \sqrt {{h^2} - {a^2}} \) 

\(A = \frac{1}{2}a\sqrt {{{\left( {K - a} \right)}^2} - {a^2}} \) 

\(A = \frac{1}{2}a\sqrt {{K^2} - 2aK} \) 

For the maximum area of the triangle, we need to find the value of a and h where it will be maximum.

Taking the derivative of the above, and equating it to zero, we get:

\(\frac{{dA}}{{da}} = 0\) 

\( = \frac{1}{2}\sqrt {{K^2} - 2aK} + \frac{1}{2}a \times \frac{1}{2}\frac{{\left( { - 2K} \right)}}{{\sqrt {{K^2} - 2aK} }} = 0\) 

K2 – 2aK – aK = 0

K2 = 3 aK

K = 3a

a + h = K

a + h = 3a

h = 2a

F4 S.B Madhu 30.07.20 D12

\(\cos \theta = \frac{a}{h}\)

\(\cos \theta = \frac{a}{{2a}}\)

\(\cos \theta = \frac{1}{2}\)

θ = 60°

Maxima & Minima Question 4:

Minimum of the real valued function \(f\left( x \right) = 10{\left( {x - 1} \right)^{\frac23}}\) occurs at x equal to

  1. - ∞
  2. 0
  3. 1

Answer (Detailed Solution Below)

Option 3 : 1

Maxima & Minima Question 4 Detailed Solution

Explanation:

\(f\left( x \right) = 10{\left( {x - 1} \right)^{\frac23}}\)

Now, given that f(x) is a real-valued function.

If (x – 1) is negative, then the factional power of the negative number is imaginary.

So, (x – 1) cannot be negative.

Therefore, (x – 1) should be ≥ 0 and x ≥ 1.

f(x) is an increasing function. So, f(x) will be minimum at the minimum value of x.

Hence, f(x) will be minimum at x = 1.

Maxima & Minima Question 5:

The maximum value of the function f(x) = ln(1 + x) - x, (where 𝑥 > −1) occurs at 𝑥 =______.

Answer (Detailed Solution Below) -0.01 - 0.01

Maxima & Minima Question 5 Detailed Solution

Concept:

The point of maxima or minima is obtained by solving for the derivative of the function and equating to zero.

Then, to check if the point is a point of maxima ‘or’ minima we check the second derivative at that point.

This is explained with the help of the following graph:

F2 S.B Madhu 18.07.20 D1

If \(\frac{{{d^2}f}}{{d{x^2}}} < 0\); the point will be a point of maxima

If \(\frac{{{d^2}f}}{{d{x^2}}} > 0\), the point will be a point of minima.

Calculation:

f(x) = ln (x + 1) – x

\(f'\left( x \right) = \frac{1}{{x + 1}} - 1\)

Equation f’(x) = 0, and solving for x, we get a possible maximum or minimum point, i.e.

\(\frac{1}{{x + 1}} - 1 = 0\)

x + 1 = 1

x = 0

Now, checking for f’’(x)|x = 0, we get:

\(f''\left( x \right) = \frac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\)

At x = 0,

\(f''\left( 0 \right) = \frac{{ - 1}}{{{{\left( {0 + 1} \right)}^2}}} = - 1\)

Since, f’’(0) < 0, x = 0 is a point of maximum.

∴ The maximum value of the function f(x) occurs at x = 0

Maxima & Minima Question 6:

A rectangular sheet of metal of length 6 m and width 2 m is given. Four equal squares are removed from the corners. The sides of this sheet are now turned up to form an open rectangular box. Find the height of the box (in m) such that the volume of the box is maximum.

  1. 45 cms 
  2. 40 cms
  3. 35 cms
  4. 20 cms

Answer (Detailed Solution Below)

Option 1 : 45 cms 

Maxima & Minima Question 6 Detailed Solution

MATHS FT10 images Q3

Let the side of each of the squares cutoff be x m so that the height of the box is x m and the sides of the base are 6 – 2x, 2 – 2x m as shown in the figure.

Volume V of the box,

V = x (6 – 2x) (2 – 2x) = 4 (x3 – 4x2 + 3x)

\(\frac{{dv}}{{dx}} = 4\left( {3{x^2} - 8x + 3} \right)\)

For V to be maximum or minimum, we must have

\(\begin{array}{l} \frac{{dv}}{{dx}} = 0\\ \Rightarrow 3{x^2} - 8x + 3 = 0\\ \Rightarrow x = \frac{{8 \pm \sqrt {64 - 4\left( 3 \right)\left( 3 \right)} }}{6} = \frac{{8 \pm \sqrt {28} }}{6} = \frac{{4 \pm \sqrt 7 }}{3} \end{array}\)

⇒ x = 2.2 (or) 0.45 m

The value x = 2.2 m is not valid as no box is possible for this value. \(\frac{{{d^2}V}}{{d{x^2}}} = 4\left( {6x - 8} \right)\)

At x = 0.45 m, \(\frac{{{d^2}v}}{{d{x^2}}}\) is negative.

Hence at x = 0.45 m = 45 cms

Volume of the box is maximum.

Maxima & Minima Question 7:

What is the maximum value of the function f(x) = 2x2 -2x + 6 in the interval [0, 2]?

  1. 6
  2. 10
  3. 12
  4. 5

Answer (Detailed Solution Below)

Option 2 : 10

Maxima & Minima Question 7 Detailed Solution

\(f\left( x \right) = 2{x^2} - 2x + 6\)

\(f'\left( x \right) = 4x - 2\)

To find point at which maximum and minimum may occur equate:

\(f'\left( x \right) = 0\)

\(4x - 2 = 0\)

\(\therefore x = \frac{1}{2}\)

Since

\(f''\left( x \right) = 4 > 0\)

∴ at x = ½ minima can occur but not maxima

Also check the border condition for local maxima or minima

x

f(x) = 2x2 - 2x + 6

Interval [0, 2]

0

6

 

½

5.5

Local Minima

2

10

Local Maxima

 

Therefore, maximum value is 10.

Maxima & Minima Question 8:

Given a function K(x, y) = 4x2 + 6y2 - 8x - 4y + 8. The optimum value of K(x, y)

  1. is a minimum equal to 10/3.
  2. is a maximum equal to 10/3.
  3. is a minimum equal to 8/3.
  4. is a maximum equal to 8/3

Answer (Detailed Solution Below)

Option 1 : is a minimum equal to 10/3.

Maxima & Minima Question 8 Detailed Solution

Concept:

Maxima and Minima of a function:

Let f(x, y) is supposed to be continuous for all values of x and y in the neighborhood of x = a and y = b. Then f(a,b) is called as maximum or minimum of f(x, y) according as f(a + h, b + k) is less than or greater than for all sufficiently small independent value of h and k, positive or negative, provided both of them are not equal to zero.

Necessary conditions for a point to be maxima or minima: The necessary conditions for f(x, y) to have maxima or minima at x = a, y = b is that

\({\frac{{\partial {\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial {\rm{x}}}}_{\left( {\begin{array}{*{20}{c}} {x = a,}\\ {y = b} \end{array}} \right)}} = 0{\rm{\;and\;\;}}{\frac{{\partial {\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right)}}{{\partial {\rm{y}}}}_{\left( {\begin{array}{*{20}{c}} {x = a,\;}\\ {y = b} \end{array}} \right)}} = 0\)

Sufficient conditions for a point to be maxima and minima:

\({\rm{r}} = {\frac{{{\partial ^2}{\rm{f}}}}{{\partial {{\rm{x}}^2}}}_{\left( {\begin{array}{*{20}{c}} {x = a,}\\ {y = b} \end{array}} \right)}};{\rm{\;s}} = {\frac{{{\partial ^2}{\rm{f}}}}{{\partial {\rm{x\;}}\partial {\rm{y}}}}_{\left( {\begin{array}{*{20}{c}} {x = a,}\\ {y = b} \end{array}} \right)}};{\rm{t}} = {\frac{{{\partial ^2}{\rm{f}}}}{{\partial {{\rm{y}}^2}}}_{\left( {\begin{array}{*{20}{c}} {x = a,}\\ {y = b} \end{array}} \right)}}{\rm{\;}}\)

Case 1. Maxima or Minima at x = a and y = b if rt > s2.

if r > 0 → minima and if r < 0 → maxima

Case 2. Neither Maxima or Minima at x = a and y = b if rt < s2.

The point is called saddle point.

Case 3. If rt = s2 then further investigation needs to be done to know about the point

Calculation:

K(x, y) = 4x2 + 6y2 - 8x - 4y + 8

\(\frac{{\partial {\rm{K}}}}{{\partial {\rm{x}}}} = 8{\rm{x}} + 0 - 8 - 0 + 0 = 0\)

8x - 8 = 0 → x = 1

\(\frac{{\partial {\rm{K}}}}{{\partial {\rm{y}}}} = 0 + 12{\rm{y}} - 0 - 4 + 0 = 0\)

12y - 4 = 0 → y = 0.333

To check for maxima or minima,

\({\rm{r}} = \frac{{{\partial ^2}{\rm{K}}}}{{\partial {{\rm{x}}^2}}} = 8\)

\({\rm{s}} = \frac{{{\partial ^2}{\rm{K}}}}{{\partial {\rm{x\;}}\partial {\rm{y}}}} = 0\)

\({\rm{t}} = \frac{{{\partial ^2}{\rm{K}}}}{{\partial {{\rm{y}}^2}}} = 12\)

∵ r > 0 and rt > s2

∴ The function has minimum at x = 1 and y = 0.333

The minimum value of the function is:

\({\bf{K}}\left( {1,\;0.333} \right) = \frac{{10}}{3}\)

Maxima & Minima Question 9:

If a function f(x, y, z) = x + y + z is subjected to \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \)

  1. Maximum value of f(x, y, z) is 9
  2. Maximum value of f(x, y, z) is 1
  3.  (-3, 3, 1) is a Stationary point 
  4.  (3, 3, 3) is a Stationary point 

Answer (Detailed Solution Below)

Option :

Maxima & Minima Question 9 Detailed Solution

Calculation:

Given

\(f\left( {x,y,z} \right) = x + y + z\)

\(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1\)     --- (i)

\(\phi \left( {x,y,z} \right) = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1\)

Lagrange’s function

\(F\left( {x,y,z} \right) = f\left( {x,y,z} \right) + \lambda \times \phi \left( {x,y,z} \right)\)

∴ \(F\left( {x,y,z} \right) = x + y + z + \lambda \times \left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)\; \)

Lagrange’s equations are

\(\frac{{\partial F}}{{\partial x}} = 0\;,\frac{{\partial F}}{{\partial y}} = 0,\frac{{\partial F}}{{\partial z}} = 0\;\)

\(\frac{{\partial F}}{{\partial x}} = 1 + \lambda \times \left( { - \frac{1}{{{x^2}}}} \right)\; = 0\)

\(\lambda = {x^2}\) -- (ii)

\(\frac{{\partial F}}{{\partial y}} = 1 + \lambda \times \left( { - \frac{1}{{{y^2}}}} \right) = 0\;\;\)

\(\lambda = {y^2}\)     — (iii)

\(\frac{{\partial F}}{{\partial z}} = 1 + \lambda \times \left( { - \frac{1}{{{z^2}}}} \right) = 0\;\)

\(\lambda = {z^2}\)      --- (iv)

From (ii), (iii), (iv)

\(\lambda = {x^2} = {y^2} = {z^2}\)

\(i.e\;x = y = z = \surd \lambda \)

Substituting in equation (i), we get

\(\frac{1}{{\sqrt \lambda }} + \frac{1}{{\sqrt \lambda }} + \frac{1}{{\sqrt \lambda }} = 1\)

λ = 9

\(x = y = z = \pm 3 \) 

∴ Stationary points are (3, 3, 3) and (-3,-3,-3)

But Stationary Point (-3,-3,-3) does not satisfy the constraint \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1\)

\(f\left( {x,y,z} \right) = x + y + z \)

∴ \(maximum\;value\;of\;f\left( {x,y,z} \right) = f\left( {3,3,3} \right) = 3 + 3 + 3 = 9 \)

 

Maxima & Minima Question 10:

The function \({x^4}{e^{ - \frac{{2x}}{3}}}\) (for x > 0) has a maximum at a value of x equal to ______ (round off to two decimal places)

Answer (Detailed Solution Below) 5.97 - 6.03

Maxima & Minima Question 10 Detailed Solution

Concept:

The point of maxima or minima is obtained by solving for the derivative of the function and equating to zero.

Then, to check if the point is a point of maxima ‘or’ minima we check the second derivative at that point.

This is explained with the help of the following graph:

F2 S.B Madhu 18.07.20 D1

If \(\frac{{{d^2}f}}{{d{x^2}}} < 0\); the point will be a point of maxima

If \(\frac{{{d^2}f}}{{d{x^2}}} > 0\), the point will be a point of minima.

Calculation:

The given function \(f\left( x \right) = {x^4}{e^{ - \frac{{2x}}{3}}}\)

\(f'\left( x \right) = 4{x^3}{e^{ - \frac{{2x}}{3}}} - \frac{2}{3}{x^4}{e^{ - \frac{{2x}}{3}}}\)

To get the critical points, f’(x) = 0

\( \Rightarrow 4{x^3}{e^{ - \frac{{2x}}{3}}} - \frac{2}{3}{x^4}{e^{ - \frac{{2x}}{3}}} = 0\)

⇒ x = 0, 6

\(f''\left( x \right) = 4\left( {3{x^2}{e^{ - \frac{{2x}}{3}}} - \frac{2}{3}{x^3}{e^{ - \frac{{2x}}{3}}}} \right) - \frac{2}{3}\left( {4{x^3}{e^{ - \frac{{2x}}{3}}} - \frac{2}{3}{x^4}{e^{ - \frac{{2x}}{3}}}} \right)\)

At x = 0, f’’(0) = 0

At x = 6, f’’(6) < 0

Therefore, the given function has a maximum at a value of x = 6.

Get Free Access Now
Hot Links: teen patti master download teen patti master online teen patti master downloadable content teen patti wealth teen patti list