Transconductance MCQ Quiz in मल्याळम - Objective Question with Answer for Transconductance - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 23, 2025

നേടുക Transconductance ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Transconductance MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Transconductance MCQ Objective Questions

Top Transconductance MCQ Objective Questions

Transconductance Question 1:

Two n channel MOSFETs are fabricated and biased in saturation region in such a way that the first one has width as well as VGS-VTH double as those of the second one. All other parameters remain the same. What is the ratio of drain currents of the transistors?

  1. 2 ∶ 1
  2. 4 ∶ 1
  3. 8 ∶ 1
  4. 16 ∶ 1

Answer (Detailed Solution Below)

Option 3 : 8 ∶ 1

Transconductance Question 1 Detailed Solution

Explanation:

 

  • The drain current (ID) of a MOSFET in the saturation region is given by the equation:

    ID = (1/2) × μn × Cox × (W/L) × (VGS - VTH,

    where:
    • μn: Electron mobility
    • Cox: Gate-oxide capacitance per unit area
    • W: Width of the MOSFET channel
    • L: Length of the MOSFET channel
    • VGS: Gate-to-source voltage
    • VTH: Threshold voltage
  • All other parameters (μn, Cox, and L) are constant in this problem.
  • Therefore, the drain current is directly proportional to both the width of the MOSFET (W) and the square of the overdrive voltage (VGS - VTH).

Solution:

Let the parameters of the second MOSFET (MOSFET 2) be:

  • Width: W
  • Overdrive voltage: (VGS - VTH)
  • Drain current: ID2

For the first MOSFET (MOSFET 1), the parameters are:

  • Width: 2W (double the width of MOSFET 2)
  • Overdrive voltage: 2(VGS - VTH) (double the overdrive voltage of MOSFET 2)
  • Drain current: ID1

The drain current for MOSFET 2 is:

ID2 = (1/2) × μn × Cox × (W/L) × (VGS - VTH

The drain current for MOSFET 1 is:

ID1 = (1/2) × μn × Cox × (2W/L) × [2(VGS - VTH)]²

Simplifying ID1:

ID1 = (1/2) × μn × Cox × (2W/L) × 4(VGS - VTH

ID1 = 4 × (1/2) × μn × Cox × (W/L) × (VGS - VTH

ID1 = 8 × ID2

Conclusion:

The ratio of the drain currents of the two MOSFETs is:

ID1 : ID2 = 8 : 1

The correct answer is Option 3.

Transconductance Question 2:

The small signal voltage gain of the common-source Amplifier shown in the figure if \({{I}_{D}}=1mA,~{{\mu }_{n}}{{C}_{ox}}=\frac{100\mu A}{{{V}^{2}}}\) , VT = 0.5 V is _________

F1 R.D Shashi 13.11.2019 D 21

Answer (Detailed Solution Below) -4 - -3

Transconductance Question 2 Detailed Solution

Concept:

Voltage gain is given by:

Av = - gmRD

\({{g}_{m}}=\sqrt{2{{\mu }_{n}}{{C}_{ox}}\left( \frac{W}{L} \right){{I}_{D}}}\)

Calculation:

\({{g}_{m}}=\sqrt{2{{\mu }_{n}}{{C}_{ox}}\left( \frac{W}{L} \right){{I}_{D}}}\)

\(=\frac{1}{300\text{ }\!\!\Omega\!\!\text{ }}\)

AV = - gmRD

\(=-\frac{1}{300}\times 1000\)

= -3.33

Transconductance Question 3:

The small signal output resistance R0 of the NMOS circuit if ID = 0.5 mA, λ = 0.02 V-1, \({k_n} = \frac{1}{2}{\mu _n}{C_{ox}}\left( {\frac{W}{L}} \right) = 0.1mA/{V^2}\) is _____ kilo ohms.

D76

Answer (Detailed Solution Below) 2.1 - 2.3

Transconductance Question 3 Detailed Solution

The small signal model with a test voltage Vx is shown.

D77

The output resistance is given by \({R_0} = \frac{{{V_x}}}{{{I_x}}}\)

From the circuit

Vgs = Vx

Applying KCL

\(- {I_x} + {g_m}{V_x} + \frac{{{V_x}}}{{{r_0}}} = 0\)

\(\frac{{{V_x}}}{{{I_x}}} = {R_0} = \frac{{{r_0}}}{{1 + {r_0}gm}} = {r_0}/\frac{1}{{{g_m}}}\)

Calculation of gm

\({I_D} = \frac{1}{2}{\mu _n}{C_{ox}}\left( {\frac{W}{L}} \right){\left( {{V_{gs}} - {V_t}} \right)^2}\)

\({I_D} = k{\left( {{V_{gs}} - {V_t}} \right)^2}\)

\(\sqrt {\frac{{{I_D}}}{k}} = \left( {{V_{gs}} - {V_t}} \right)\)

\(\frac{{d{I_D}}}{{d{V_{GS}}}} = 2k\left( {{V_{gs}} - {V_t}} \right)\)

\(\frac{{d{I_D}}}{{d{V_{GS}}}} = 2k\sqrt {\frac{{{I_D}}}{k}} = 2\sqrt {k{I_D}} \)

\({g_m} = 2\sqrt {{k_n}{I_D}}\)

= 0.447 mA/V

\({r_0} = \frac{1}{{\lambda {I_D}}} = 100\;k\)

\({R_0} = \frac{1}{{{g_m}}}\left| {\left| {{r_0} = 2.24k} \right|} \right|100k\)

= 2.19 k

Transconductance Question 4:

The table shows the standard values of NMOS transistor using 0.25 μm technology.

Parameter

Value

tox­ (nm)

6

Cox (bF/μm2)

5.8

μ (cm2/V-sec)

460

μ - Cox (μA/V2)

267

Vto (V)

0.5

VDD (V)

2.5

VA’|(V/μm)

5

C0V (bF/μm)

0.3

 

If NMOS is operating at 100 μA of drawn current and L = 0.4 um W = 4 um. The intrinsic gain of the NMOS is

  1. 7.3
  2. 21.9
  3. 14.6
  4. 26.28

Answer (Detailed Solution Below)

Option 3 : 14.6

Transconductance Question 4 Detailed Solution

For NMOS:

\(gm = \sqrt {2\left( {{u_n}{C_{ox}}} \right){{\left( {\frac{W}{{\rm{L}}}} \right)}{I_d}}} \)

\( = \sqrt {2 \times 267 \times 10 \times 100} \;\)

= 0.73 mA/V

\({r_0} = \frac{{V_A'L}}{{{I_D}}} = \frac{{5 \times 0.4}}{{0.1}} = 20\;k{\rm{\Omega }}\)

A0 = gm r0 = 0.73 × 20

= 14.6 V/V

Transconductance Question 5:

Consider the CMOS common-source amplifier shown in the figure. If VDD = 3V, Vtn = |Vtp| = 0.6 V, \({\mu _n}{C_{ox}} = 200\frac{{\mu A}}{{{V^2}}},{\mu _p}{C_{ox}} = \frac{{65\mu A}}{{{V^2}}}\) and all transistor have \(\frac{\omega }{L} = 10.\) The early voltage is given as VAN = |20 V| and |VAP| = 10 V. if IREF = 100 μA. The small signal voltage gain is.

correction

  1. -42 V/V
  2. -21 V/V
  3. -63 V/V
  4. -30 V/V

Answer (Detailed Solution Below)

Option 1 : -42 V/V

Transconductance Question 5 Detailed Solution

The circuit shown is CMOS circuit implementation of the common-source amplifier.

Here load = Q2 transistor and output is taken across Q1

\({A_v} = \frac{{{v_0}}}{{{v_i}}} = {A_{{v_0}}}\left( {\frac{{{R_L}}}{{{R_L} + {R_0}}}} \right)\)

\( = - \left( {{g_{m1}}{r_{01}}} \right)\left( {\frac{{{r_{02}}}}{{{r_{02}} + {r_{01}}}}} \right)\)

\( = - {g_{m1}}({r_{01}}|{\rm{|}}{r_{02}}{\rm{)}}\)      ......(1)

\({g_{m1}} = \sqrt {2k_n'{{\left( {\frac{\omega }{L}} \right)}_1}{I_{ref}}} \)

\( = \sqrt {2 \times 200 \times 10 \times 100} = 0.63\;mA/V\)

\({r_{01}} = \frac{{{V_{AN}}}}{{{I_{D1}}}} = \frac{{20\;V}}{{0.1\;mA}} = 100\;k{\rm{\Omega }}\)

\({r_{02}} = \frac{{{V_{AP}}}}{{{I_{D2}}}} = \frac{{10\;V}}{{0.1\;mA}} = 100\;k{\rm{\Omega }}\)

Av = -gm1 (r01||r02)

= - 0.63 (mA/V) × (200||100) kΩ

= -42 V/V

Transconductance Question 6:

A enhancement type N-Channel MOSFET is biased in linear region and is used as voltage controlled resistor. If the drain-source resistance is 500Ω for VGS = 2V then the drain-source resistance at VGS = 5 V is _________ Ω

Take VT = 0.5 V

Answer (Detailed Solution Below) 166 - 167

Transconductance Question 6 Detailed Solution

In linear region MOSFET drain current

\({I_D} = {\mu _n}{C_o} \times \frac{W}{L}\left[ {\left( {{V_{GS}} - {V_T}} \right){V_{DS}} - \frac{1}{2}V_{DS}^2} \right]\)

In linear region with very small VDS the equation can be written as

\(\begin{array}{l} {I_D} \cong {\mu _n}{C_o} \times \frac{W}{L}\left( {{V_{GS}} - {V_T}} \right){V_{DS}}\\ {V_{DS}} = \frac{{{V_{DS}}}}{{{I_D}}} = \frac{1}{{{\mu _n}{C_o} \times \frac{W}{L}\left( {{V_{GS}} - {V_T}} \right)}} \end{array}\)

VDS = 500 Ω for VGS = 2V

\(\begin{array}{l} \Rightarrow 500 = \frac{1}{{k\left( {2 - 0.5} \right)}}\\ k = \frac{1}{{500 \times 1.5}}\\ = \frac{1}{{750}} \end{array}\)

When VGS = 5V

\(\begin{array}{l} {V_{DS}} = \frac{1}{{k\left( {5 - 0.5} \right)}}\\ = \frac{1}{{\frac{{4.5}}{{750}}}}\\ = \frac{{750}}{{4.5}} = 166.67{\rm\:{\Omega }} \end{array}\)

Get Free Access Now
Hot Links: teen patti gold real cash teen patti real money app teen patti customer care number