Trigonometric elements MCQ Quiz in தமிழ் - Objective Question with Answer for Trigonometric elements - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Apr 1, 2025
Latest Trigonometric elements MCQ Objective Questions
Top Trigonometric elements MCQ Objective Questions
Trigonometric elements Question 1:
Let \(\rm \Delta=\begin{vmatrix}\sin \theta \cos \phi&\sin \theta \sin \phi&\cos \theta\\\ \cos \theta \cos \phi&\cos \theta \sin \phi&-\sin \theta\\\ -\sin \theta \sin \phi&\sin \theta\cos\phi&0\end{vmatrix}\). Then
Answer (Detailed Solution Below)
Trigonometric elements Question 1 Detailed Solution
Calculation
\(\Delta = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \end{bmatrix}\)
Expanding through R₃ we get
\(= -\sin \theta \sin \phi (-\sin^2 \theta \sin \phi - \cos^2 \theta \sin \phi) - \sin \theta \cos \phi (-\sin^2 \theta \cos \phi - \cos^2 \theta \cos \phi)\)
\(= \sin \theta \sin^2 \phi (\sin^2 \theta + \cos^2 \theta) + \sin \theta \cos^2 \phi (\sin^2 \theta + \cos^2 \theta)\)
\(= \sin \theta \sin^2 \phi + \sin \theta \cos^2 \phi = \sin \theta (\sin^2 \phi + \cos^2 \phi)\)
\(= \sin \theta\)
Independent of \(\phi\)
Also,
\(\frac{d\Delta}{d\theta} = \cos \theta\)
Therefore,
\(\frac{d\Delta}{d\theta}\) at \(\theta = \frac{\pi}{2}\) \(= \cos(\frac{\pi}{2}) = 0\)
Hence option 2 and 4 are correct
Trigonometric elements Question 2:
Let \(A=\left(\begin{array}{cc} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{array}\right)\) and A + AT - 2I = 0, where AT is the transpose of A and I is the identity matrix. The value of 𝜃 (in degrees) is ________.
Answer (Detailed Solution Below) 90
Trigonometric elements Question 2 Detailed Solution
The correct option is: 90
Explanation: We start with the matrix ( A ) and the given equation ( A + AT - 2I = 0 ).
Given: \([ A = \begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} ]\)
- First, determine the transpose of ( A ):\( [ A^T = \begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} ]\)
- Next, add ( A ) and ( AT ): [ A + AT = \(\begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} + \begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} = \begin{pmatrix} 2\sin θ & 2\cos θ \ 2\cos θ & 2\sin θ \end{pmatrix} ]\)
- Now, subtract ( 2I ) from ( A + AT ): \([ 2I = \begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix} ] [ A + A^T - 2I = \begin{pmatrix} 2\sin θ & 2\cos θ \ 2\cos θ & 2\sin θ \end{pmatrix} - \begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2\sin θ - 2 & 2\cos θ \ 2\cos θ & 2\sin θ - 2 \end{pmatrix} ]\)
- Set ( A + AT - 2I ) equal to the zero matrix: \([ \begin{pmatrix} 2\sin θ - 2 & 2\cos θ \ 2\cos θ & 2\sin θ - 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix} ]\)
- This results in the following equations: \([ 2\sin θ - 2 = 0 ] [ 2\cos θ = 0 ]\)
- Solving these gives: \([ 2\sin θ - 2 = 0 \rightarrow \sin θ = 1 ] [ 2\cos θ = 0 \rightarrow \cos θ = 0 ]\)
- The only angle that satisfies both equations is \((θ = 90^\circ).\)
Thus, the value of (θ) is 90.