যদি \(\sin \theta = \frac{8}{{17}}\) হয় যেখানে \(\theta \) হল একটি সূক্ষ্মকোণ, তাহলে \(\tan θ + \cot θ\) এর মান কত হবে? 

This question was previously asked in
SSC CGL 2022 Tier-I Official Paper (Held On : 09 Dec 2022 Shift 3)
View all SSC CGL Papers >
  1. \(\frac{{217}}{{110}}\)
  2. \(\frac{{281}}{{190}}\)
  3. \(\frac{{289}}{{120}}\)
  4. \(\frac{{512}}{{321}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{289}}{{120}}\)
super-pass-live
Free
SSC CGL Tier 1 2025 Full Test - 01
3.3 Lakh Users
100 Questions 200 Marks 60 Mins

Detailed Solution

Download Solution PDF

প্রদত্ত:

\(\sin θ = \frac{8}{{17}}\), যেখানে θ একটি সূক্ষ্মকোণ

অনুসৃত সূত্র:

sin2θ + cos2θ = 1

tan θ = \(\frac{\sinθ}{\cosθ}\) , and এবং

cot θ = \(\frac{\cosθ}{\sinθ}\)

গণনা:

আমাদের \(\tanθ\) এবং \(\cotθ\) খুঁজে বের করতে হলে, \(\cosθ\) এর প্রয়োজন:

sin2θ + cos2θ = 1

cos θ = \(\sqrt{1-{(\sinθ)}^2} \)

⇒ \(\sqrt{1-{(\frac{8}{17})}^2}\)

⇒ \(\sqrt{1-{(\frac{64}{289})}}\)

⇒ \(\sqrt{\frac{225}{289}}\)

⇒ \(\frac{15}{17}\)

এখন, \(\tan θ + \cot θ\) এর মান গণনা করা যাক:

\(\frac{\sinθ}{\cosθ}+\frac{\cosθ}{\sinθ}\)

\(\frac{(\sinθ)^2+(\cosθ)^2}{\sinθ\cosθ}\)

\(\frac{1}{\sinθ\cosθ}\)

\(\frac{1}{\frac{8}{17}\times\frac{15}{17}}\)

\(\frac{17\times17}{8\times15}\)

\(\frac{289}{120}\)

 ∴ tan θ  + cot θ এর মান হল \(\bf \frac{289}{120}\)

Shortcut Trick 

\(\sin θ = \frac{8}{{17}}\) = P/H, আমরা পাইথাগোরিয়ান ট্রিপলেট জানি (8, 15, 17)

তাহলে, ভূমি (B) = 15, so tan θ = P/B = 8/15, cot θ = 15/17

⇒ tan θ + cot θ 

⇒ 8/15 + 15/8 

⇒ \(\bf \frac{289}{120}\)

Latest SSC CGL Updates

Last updated on Jul 8, 2025

-> The SSC CGL Notification 2025 for the Combined Graduate Level Examination has been officially released on the SSC's new portal – www.ssc.gov.in.

-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.

-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.

->  Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.

-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.

-> The CGL Eligibility is a bachelor’s degree in any discipline.

-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.

-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.

-> The CSIR NET Exam Schedule 2025 has been released on its official website.

Get Free Access Now
Hot Links: teen patti comfun card online teen patti party teen patti real cash apk teen patti casino teen patti app