Question
Download Solution PDFযদি \(\sin \theta = \frac{8}{{17}}\) হয় যেখানে \(\theta \) হল একটি সূক্ষ্মকোণ, তাহলে \(\tan θ + \cot θ\) এর মান কত হবে?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFপ্রদত্ত:
\(\sin θ = \frac{8}{{17}}\), যেখানে θ একটি সূক্ষ্মকোণ
অনুসৃত সূত্র:
sin2θ + cos2θ = 1
tan θ = \(\frac{\sinθ}{\cosθ}\) , and এবং
cot θ = \(\frac{\cosθ}{\sinθ}\)
গণনা:
আমাদের \(\tanθ\) এবং \(\cotθ\) খুঁজে বের করতে হলে, \(\cosθ\) এর প্রয়োজন:
sin2θ + cos2θ = 1
cos θ = \(\sqrt{1-{(\sinθ)}^2} \)
⇒ \(\sqrt{1-{(\frac{8}{17})}^2}\)
⇒ \(\sqrt{1-{(\frac{64}{289})}}\)
⇒ \(\sqrt{\frac{225}{289}}\)
⇒ \(\frac{15}{17}\)
এখন, \(\tan θ + \cot θ\) এর মান গণনা করা যাক:
⇒\(\frac{\sinθ}{\cosθ}+\frac{\cosθ}{\sinθ}\)
⇒\(\frac{(\sinθ)^2+(\cosθ)^2}{\sinθ\cosθ}\)
⇒\(\frac{1}{\sinθ\cosθ}\)
⇒\(\frac{1}{\frac{8}{17}\times\frac{15}{17}}\)
⇒\(\frac{17\times17}{8\times15}\)
⇒\(\frac{289}{120}\)
∴ tan θ + cot θ এর মান হল \(\bf \frac{289}{120}\)
Shortcut Trick
\(\sin θ = \frac{8}{{17}}\) = P/H, আমরা পাইথাগোরিয়ান ট্রিপলেট জানি (8, 15, 17)
তাহলে, ভূমি (B) = 15, so tan θ = P/B = 8/15, cot θ = 15/17
⇒ tan θ + cot θ
⇒ 8/15 + 15/8
⇒ \(\bf \frac{289}{120}\)
Last updated on Jul 8, 2025
-> The SSC CGL Notification 2025 for the Combined Graduate Level Examination has been officially released on the SSC's new portal – www.ssc.gov.in.
-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.
-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.
-> Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.
-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.
-> The CGL Eligibility is a bachelor’s degree in any discipline.
-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.
-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.
-> The CSIR NET Exam Schedule 2025 has been released on its official website.