Question
Download Solution PDF\(\triangle\)ABC, B पर एक समकोण त्रिभुज है और tan A = \(\frac{3}{4}\), तो sin A + sin B + sin C का मान क्या होगा?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
ΔABC, B पर एक समकोण त्रिभुज है और tan A = \(\frac{3}{4}\)
प्रयुक्त अवधारणा:
1. tan θ = ऊँचाई ÷ आधार
2. sin θ = ऊँचाई ÷ कर्ण
3. पाइथागोरस प्रमेय के अनुसार "एक समकोण त्रिभुज में, कर्ण भुजा का वर्ग अन्य दो भुजाओं के वर्गों के योगफल के बराबर होता है।"
गणना:
tan A = \(\frac{3}{4}\)
⇒ \(\frac {BC}{AB}\) = \(\frac{3}{4}\)
⇒ BC : AB = 3 : 4
माना BC और AB की माप क्रमशः 3k और 4k है।
अवधारणा के अनुसार,
AC2 = \(\sqrt { (3k)^2 + (4k)^2 }\) = 5k
अब, sin A + sin B + sin C
⇒ \(\frac {BC}{AC} + sin\ 90^\circ + \frac {AB}{AC}\)
⇒ \(\frac {BC + AB}{AC} + 1\)
⇒ \(\frac {3k + 4k}{5k} + 1\)
⇒ \(\frac {7}{5} + 1\)
⇒ \(\frac {12}{5}\) = \(2\frac{2}{5}\)
∴ sin A + sin B + sin C का मान \(2\frac{2}{5}\) है।
Last updated on Jul 10, 2025
-> The SSC CGL Application Correction Window Link Live till 11th July. Get the corrections done in your SSC CGL Application Form using the Direct Link.
-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.
-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.
-> Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.
-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.
-> The CGL Eligibility is a bachelor’s degree in any discipline.
-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.
-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.