If Electric field intensity of a uniform plane electro magnetic wave is given as E = - 301.6 sin(kz - ωt) \(\widehat{a}\)x + 452.4 sin (kz - ωt) \(\widehat{a}\)y \(\frac{V}{M}\). Then, magnetic intensity ‘H’ of this wave in Am-1 will be :

[Given : Speed of light in vacuum c = 3 × 108 ms-1, Permeability of vacuum μ0 = 4π × 10-7 NA-2]

  1. + 0.8 sin (kz - ωt) \(\widehat{a}\)y + 0.8 sin (kz - ωt) \(\widehat{a}\)x.
  2. + 1.0 × 10-6 sin (kz - ωt) \(\widehat{a}\)y + 1.5 × 10-6  (kz - ωt) \(\widehat{a}\)x
  3. -0.8 sin (kz - ωt) \(\widehat{a}\)y - 1.2 sin (kz - ωt) \(\widehat{a}\)x
  4. -1.0  × 10-6 sin (kz - ωt) \(\widehat{a}\)y - 1.5 × 10-6 sin (kz - ωt) \(\widehat{a}\)x

Answer (Detailed Solution Below)

Option 1 : + 0.8 sin (kz - ωt) \(\widehat{a}\)y + 0.8 sin (kz - ωt) \(\widehat{a}\)x.
Free
JEE Main 04 April 2024 Shift 1
12.5 K Users
90 Questions 300 Marks 180 Mins

Detailed Solution

Download Solution PDF

CONCEPT:

  • Magnetic intensity is written as;

          \(\vec H = \frac{\vec B}{μ_o}\)

          Here we have H as the magnetic intensity, B as the magnetic field and μo is the permeability of the free space.

  • The magnetic field is written as;

           \(\vec B = \frac{\vec E}{c} (\hat n \times \vec k)\)

           Here E is the electric field, and c is the velocity of light.

CALCULATIONS:

Given :  E = - 301.6 sin(kz - ωt) \(\widehat{a}\)x + 452.4 sin (kz - ωt) \(\widehat{a}\)\(\frac{V}{M}\)

Now, the magnetic field is written as;

\(\vec B = \frac{ - 301.6 sin(kz - ωt) (\vec x \times \vec k)+ 452.4 sin (kz - ωt) (\vec y \times \vec k) }{c} \)

⇒ \(\vec B = \frac{1}{c} (- 301.6 sin(kz - ωt) (\vec x \times \vec k)+ 452.4 sin (kz - ωt) (\vec y \times \vec k)) \)

⇒ \(\vec B = \frac{1}{c} (- 301.6 sin(kz - ωt) (-\hat a_y)+ 452.4 sin (kz - ωt)( - \hat a _x)) \)      -----(1)

Now magnetic intensity H is written as;

\(\vec H = \frac{\vec B}{μ_o}\)      -----(2)

Now, on putting the value of equation (1) in (2) we have;

\(\vec H = \frac{\frac{1}{c} (- 301.6 sin(kz - ωt) (-\hat a_y)+ 452.4 sin (kz - ωt)( - \hat a _x))}{μ_o}\)

Now, c = 3 \(\times\) 108 and μo = \(4\pi \times 10^{-7}\) N/A2

Now, \(\vec H = \frac{ (- 301.6 sin(kz - ωt) (-\hat a_y)+ 452.4 sin (kz - ωt)( - \hat a _x))}{3 \times 10 ^8 \times 4 \pi \times 10^{-7}}\)

⇒ \(\vec H \) = -0.8 sin (kz - ωt) \(\widehat{a}\)y - 1.2 sin (kz - ωt) \(\widehat{a}\)x

Hence, the correct answer is option 3).

Latest JEE Main Updates

Last updated on May 23, 2025

-> JEE Main 2025 results for Paper-2 (B.Arch./ B.Planning) were made public on May 23, 2025.

-> Keep a printout of JEE Main Application Form 2025 handy for future use to check the result and document verification for admission.

-> JEE Main is a national-level engineering entrance examination conducted for 10+2 students seeking courses B.Tech, B.E, and B. Arch/B. Planning courses. 

-> JEE Mains marks are used to get into IITs, NITs, CFTIs, and other engineering institutions.

-> All the candidates can check the JEE Main Previous Year Question Papers, to score well in the JEE Main Exam 2025. 

More The Traveling Electromagnetic Wave Questions

More Electromagnetic Waves Questions

Get Free Access Now
Hot Links: teen patti refer earn teen patti cash teen patti casino teen patti dhani teen patti rummy