The number of non-zero values of k for which the linear equations

4x + ky + z = 0

kx + 4y + z = 0

2x + 2y + z = 0

possess a non-zero solution is:

This question was previously asked in
NIMCET 2020 Official Paper
View all NIMCET Papers >
  1. 2
  2. 1
  3. 0
  4. 3

Answer (Detailed Solution Below)

Option 2 : 1
Free
NIMCET 2020 Official Paper
10.7 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

Cramer's rule for Linear Equations of Three Variables:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

\(\rm D=\begin{vmatrix} \rm a_{1} & \rm a_{2} & \rm a_{3}\\ \rm b_{1} & \rm b_{2} & \rm b_{3}\\ \rm c_{1} & \rm c_{2} & \rm c_{3}\end{vmatrix}\)

\(\rm \rm D_{x}=\begin{vmatrix}\rm d_{1} & \rm d_{2} & \rm d_{3}\\ \rm b_{1} & \rm b_{2} & \rm b_{3}\\ \rm c_{1} & \rm c_{2} & \rm c_{3}\end{vmatrix}\quad \rm D_{y}=\begin{vmatrix}\rm a_{1} & \rm a_{2} & \rm a_{3}\\ \rm d_{1} & \rm d_{2} & \rm d_{3}\\ \rm c_{1} & \rm c_{2} & \rm c_{3}\end{vmatrix}\quad \rm D_{z}=\begin{vmatrix}\rm a_{1} & \rm a_{2} & \rm a_{3}\\ \rm b_{1} & \rm b_{2} & \rm b_{3}\\ \rm d_{1} & \rm d_{2} & \rm d_{3}\end{vmatrix}\)

If D ≠ 0: a unique solution (consistent).

The solution is: \(\rm x=\frac{D_x}{D}\quad y=\frac{D_y}{D}\quad z=\frac{D_z}{D}\).

If D = 0: either infinitely many solutions (consistent and dependent) or no solution (inconsistent). To find out if the system is dependent or inconsistent, another method, such as elimination or Rouché–Capelli theorem, will have to be used.

Calculation:

For the given set of equations:

4x + ky + z = 0

kx + 4y + z = 0

2x + 2y + z = 0

It can be observed that x = y = z = 0 is one solution of the system.

In order to have infinitely many (including non-zero) solutions, D must be zero.

⇒ \(\rm D=\begin{vmatrix} 4 & \rm k & 2 \\ \rm k & 4 & 2\\ 1 & 1 & 1\end{vmatrix}\) = 0

⇒ 4(4 - 2) + k(2 - k) + 2(k - 4) = 0

⇒ 8 + 2k - k2 + 2k - 8 = 0

⇒ k2 - 4k = 0

⇒ k(k - 4) = 0

⇒ k = 0 OR k - 4 = 0

⇒ k = 0 OR k = 4

Hence, there are 2 possible values of k but a non-zero solution is one.

Latest NIMCET Updates

Last updated on Jun 2, 2025

-> NIMCET 2025 admit card will be declared on June 3, 2025. Candidates can download the hall ticket till June 8, 2025.

-> NIMCET 2025 exam is scheduled for June 8, 2025. It will be conducted in Computer-Based Test (CBT) mode and will consist of 120 multiple-choice questions.

-> NIMCET 2025 results will be declared on June 27, 2025.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

More Determinants Questions

Get Free Access Now
Hot Links: teen patti master 2025 teen patti star apk teen patti bodhi