Definite Integrals MCQ Quiz - Objective Question with Answer for Definite Integrals - Download Free PDF

Last updated on Mar 24, 2025

Latest Definite Integrals MCQ Objective Questions

Definite Integrals Question 1:

The value of the integral \(\mathop \smallint \limits_0^{\frac{\pi }{2}} \sqrt {\sin \theta } {\cos ^5}\theta {\rm{ }}d\theta \) will be

  1. \(\frac{2}{{231}}\)
  2. -64
  3. \(\frac{1}{{231}}\)
  4. \(\frac{64}{{231}}\)
  5. \(\frac{1}{{31}}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{64}{{231}}\)

Definite Integrals Question 1 Detailed Solution

Analysis:

Consider \(I = \mathop \smallint \limits_0^{\pi /2} \sqrt {\sin \theta } {\cos ^5}\theta {\rm{ }}d\theta \)

Put sin θ = t

cos θ dθ = dt

If θ = 0 to \(\theta = \frac{\pi }{2}\) then t = 0 to t = 1

Now, \(I = \mathop \smallint \limits_{\theta = 0}^{\pi /2} \sqrt {\sin \theta } \cos \theta \cdot {\left( {1 - {{\sin }^2}\theta } \right)^2}d\theta \)

\(I = \mathop \smallint \limits_{t = 0}^1 \sqrt t {\left( {1 - {t^2}} \right)^2}dt\)

\(I = \mathop \smallint \limits_{t = 0}^1 \sqrt t \left( {1 + {t^4} - 2{t^2}} \right)dt\)

\(I = \left( {\frac{{{t^{\frac{3}{2}}}}}{{\frac{3}{2}}} + \frac{{{t^{\frac{{11}}{2}}}}}{{\frac{{11}}{2}}} - \frac{{2{t^{\frac{7}{2}}}}}{{\frac{7}{2}}}} \right)_0^1\)

\(I = \frac{2}{3} + \frac{2}{{11}} - \frac{4}{7}\)

\(\therefore I = \frac{{64}}{{231}}\)

Definite Integrals Question 2:

The value of integral \(x\over cos^2 x\) is equal to

  1. x tan x
  2. log cos x
  3. x tan x + log (cos x)
  4. x tan x - log cos x
  5. log sin x

Answer (Detailed Solution Below)

Option 3 : x tan x + log (cos x)

Definite Integrals Question 2 Detailed Solution

Concept:

Trigonometric Ratio Fundamental Identities

\(\sec x ={1\over \cos x}\)

Integration by parts

when u and v are functions of x.

\(\smallint u× v~dx = u\smallint vdx - \smallint \left[ {\frac{{du}}{{dx}}\smallint vdx} \right]dx\)

Integral of standard function 

\(\smallint \sec^2(ax +b) dx=\tan (ax+b)\)

\(\smallint\tan x dx= log |\sec x|=-log~cos x\)

The derivative of standard function

\(\frac{{d}}{{dx}}(x^n)=nx^{n-1}\)

\(\frac{{d}}{{dx}}(x)=1\)

Calculation:

Given:

we have \(x\over cos^2 x\)

where u = x and \(v ={1\over cos^2 x}= sec^2 x\)

Integration by parts

when u and v are functions of x.

Integration by parts

when u and v are functions of x.

\(\smallint u× v~dx = u\smallint vdx - \smallint \left[ {\frac{{du}}{{dx}}\smallint vdx} \right]dx\)

\(\smallint x× sec^2 x~dx = x\smallint sec^2 x~dx - \smallint \left[ {\frac{{d}}{{dx}}x\smallint sec^2x~dx} \right]dx\)

\(\smallint x× sec^2 x~dx = x \tan x~dx - \smallint \tan x dx\)

∫x × sec2 x dx = x tan x - ∫ tan x dx

∫x × sec2 x dx = x tan x - (-log (cos x))

∫ x × sec2 x dx = x tan x + log (cos x)

Definite Integrals Question 3:

The length of the curve \({\rm{y}} = \frac{2}{3}{\rm{\;}}{{\rm{x}}^{3/2}}\) between x = 0 and x = 1 is

  1. 0.27
  2. 0.67
  3. 1
  4. 1.22
  5. 2

Answer (Detailed Solution Below)

Option 4 : 1.22

Definite Integrals Question 3 Detailed Solution

Concept:

Arc length or curve length is the distance between two points along the section of the curve. Determining the length of an irregular section of the arc is termed as rectification of the curve.

The length of the curve y = f(x) from x = a to x = b is given as:

\(l= \mathop \smallint \limits_{{\rm{x}} = {\rm{a}}}^{{\rm{x}} = {\rm{b}}} \sqrt {1 + {{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)}^2}} {\rm{dx}}\)

or,

If the curve is parametrized in the form x = f(t) and y = g(t) with the parameter t going from a to b then

\(l = \mathop \smallint \limits_{{\rm{t}} = {\rm{a}}}^{{\rm{t}} = {\rm{b}}} \sqrt {{{\left( {\frac{{{\rm{dx}}}}{{{\rm{dt}}}}} \right)}^2} + {{\left( {\frac{{{\rm{dy}}}}{{{\rm{dt}}}}} \right)}^2}} {\rm{dt\;}}\)

Calculation:

\({\rm{y}} = \frac{2}{3}{\rm{\;}}{{\rm{x}}^{3/2}}\)

\(\therefore \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{2}{3} \times \frac{3}{2}{\rm{\;}}{{\rm{x}}^{\frac{1}{2}}}\)

\({\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)^2} = {\rm{x}}\)

Now, the arc length(l) is

\(l= \mathop \smallint \limits_{{\rm{x}} = 0}^{{\rm{x}} = 1} \sqrt {1 + {\rm{x}}} {\rm{\;dx}}\)

\( = \left| {\frac{{{{\left( {1 + {\bf{x}}} \right)}^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right|_0^1 \)

\(= \left( {\frac{2}{3} \times {2^{\frac{3}{2}}}} \right) - \left( {\frac{2}{3}} \right) = 1.21\)

Definite Integrals Question 4:

The integral \(\mathop \smallint \limits_2^\infty \frac{{dx}}{{x\log x}}\)

  1. diverges to ∞ 
  2. diverges to -∞ 
  3. Converges to 2
  4. Converges to -3
  5. Converges to 0

Answer (Detailed Solution Below)

Option 1 : diverges to ∞ 

Definite Integrals Question 4 Detailed Solution

Explanation:

The given integral is an improper integral of 1st kind.

\(I = \mathop \smallint \limits_2^∞ \frac{{\left( {1/x} \right)}}{{\log x}}dx\)

\(I = \left[ {\log \left( {\log x} \right)} \right]_2^∞ \)

I = log [log (∞)] – log [log (2)]

I =

Given integral is divergent and diverges to ∞

Additional Information

An improper integral of first kind is when integral limits have -∞ or +∞ or both.

An improper integral of second kind is when integral limits are finite but function is infinite at some value between those limits.

Definite Integrals Question 5:

The value of the Integral I = \(\mathop \smallint \nolimits_0^{\pi /2} {x^2}\sin x\;dx\) is

  1. (x + 2)/2
  2. 2/(π – 2) 
  3. π - 2
  4. π + 2
  5. π - 4

Answer (Detailed Solution Below)

Option 3 : π - 2

Definite Integrals Question 5 Detailed Solution

Concept:

Using Integration by parts using ILATE

\(\smallint f\left( x \right)g\left( x \right)dx = f\left( x \right)\smallint g\left( x \right)\;dx - \smallint [\left( {f'\left( x \right).\smallint g\left( x \right)\;dx} \right]dx\)

Calculation:

\({\rm{I}} = \mathop \smallint \nolimits_0^{{\rm{\pi }}/2} {{\rm{x}}^2}\sin {\rm{x\;dx}}\)

\({\rm{f}}\left( {\rm{x}} \right) = {{\rm{x}}^2}{\rm{\;and\;g}}\left( {\rm{x}} \right) = {\rm{sinx}}\)

\({\rm{I}} = \left[ { - {{\rm{x}}^2}{\rm{cosx}} - \smallint \left( { - 2{\rm{x\;cosx}}} \right)} \right]_0^{{\pi }/{2}}\;\)

\({\rm{I}} = \left[ { - {{\rm{x}}^2}{\rm{cosx}} + 2 \times \left( {{\rm{xsinx}} - \smallint {\rm{sinx\;}}} \right)} \right]_0^{{\pi }/{2}}\)

\({\rm{I}} = \left[ { - {{\rm{x}}^2}{\rm{cosx}} + 2 \times \left( {{\rm{xsinx}} + {\rm{cosx\;}}} \right)} \right]_0^{{\pi }/{2}}\)

\({\rm{I}} = \left[ {0 + 2\;\left( {\frac{\pi }{2}\;\left( 1 \right) + 0} \right)} \right] - \left[ {0 + 2\;\left( {0\; + 1} \right)} \right]\)

\({\rm{I}} = {\rm{\pi }} - 2\)

Top Definite Integrals MCQ Objective Questions

The value of the definite integral \(\mathop \smallint \limits_1^e \sqrt x \ln \left( x \right)dx\) is

  1. \(\frac{4}{9}\sqrt {{e^3}} + \frac{2}{9}\)
  2. \(\frac{2}{9}\sqrt {{e^3}} - \frac{4}{9}\)
  3. \(\frac{2}{9}\sqrt {{e^3}} + \frac{4}{9}\)
  4. \(\frac{4}{9}\sqrt {{e^3}} - \frac{2}{9}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{2}{9}\sqrt {{e^3}} + \frac{4}{9}\)

Definite Integrals Question 6 Detailed Solution

Download Solution PDF

Concept:

We know that,

By Parts method

\(\smallint u \cdot v \cdot dx = u \cdot \smallint v \cdot dx - \smallint \left[ {\frac{{du}}{{dx}}\smallint v \cdot dx} \right]dx\)

Where, u, v should follow the ILATE sequence.[I= Inverse, L= Logarithmic, A= Algebraic, T= Trigonometric, E= Exponential terms]

Calculation:

Given:

From the given Equation, \(\mathop \smallint \limits_1^e √ x \ln \left( x \right)dx\)

u = ln(x), v = √x

Now,

\(\smallint u \cdot v \cdot dx = u \cdot \smallint v \cdot dx - \smallint \left[ {\frac{{du}}{{dx}}\smallint v \cdot dx} \right]dx\)

\(\mathop \smallint \limits_1^{\rm{e}} {\rm{lnx}} \cdot √ {\rm{x}} {\rm{dx}} = {\rm{lnx}} \cdot \mathop \smallint \limits_1^{\rm{e}} √ {\rm{x}} {\rm{dx}} - \mathop \smallint \limits_1^{\rm{e}} \left[ {\frac{{{\rm{du}}}}{{{\rm{dx}}}} \cdot {\rm{\;}}\smallint √ {\rm{x}} {\rm{dx}}} \right]{\rm{dx}}\)  

\(\mathop \smallint \limits_1^{\rm{e}} {\rm{lnx}} \cdot √ {\rm{x}} {\rm{dx}}= \left[ {\ln \left( x \right) \times \frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]_1^e - \smallint \left[ {\frac{1}{x} \times \frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}}} \right]dx\)

 \(\mathop \smallint \limits_1^{\rm{e}} {\rm{lnx}} \cdot √ {\rm{x}} {\rm{dx}}= \left[ {\ln \left( x \right) \times {x^{\frac{3}{2}}} \times \frac{2}{3} - \frac{4}{9} \times {x^{\frac{3}{2}}}} \right]_1^e\)

∴  \(\mathop \smallint \limits_1^e √ x \ln \left( x \right)dx\)  \(= \frac{2}{9}√ {{e^3}} + \frac{4}{9}\)     

The value (round off to one decimal place) of  \(\mathop \smallint \nolimits_{ - 1}^1 x\;{e^{\left| x \right|}}dx\) ______

Answer (Detailed Solution Below) 0

Definite Integrals Question 7 Detailed Solution

Download Solution PDF

Explanation

Given,

 Function f(x) = x e|x|

 Integral is -1 to 1.

If f(-x) = f(x) then the function is said to be even function

 If f(-x) = - f(x) then the function is said to be odd function.

 f(-x) = -x e|-x| = -x e|x| = - f(x)

 ∴ The given function is an odd function.

 For an odd function:

 \(\mathop \smallint \nolimits_{ - a}^a x\;{f(x)}dx\) = 0

For a even function

 \(\mathop \smallint \nolimits_{ - a}^a x\;{f(x)}dx\) = 2 × \(\mathop \smallint \nolimits_{ 0}^a x\;{f(x)}dx\)

 Now, as the function is odd

 \(\mathop \smallint \nolimits_{ - 1}^1 x\;{e^{\left| x \right|}}dx\) = 0

The value of \(I = \mathop \smallint \limits_{ - 1}^1 {e^{\left| x \right|}}dx\) is equal to

  1. (e - 1)
  2. 2(e - 1)
  3. 3(e - 1)
  4. 2(1 - e)

Answer (Detailed Solution Below)

Option 2 : 2(e - 1)

Definite Integrals Question 8 Detailed Solution

Download Solution PDF

Explanation:

\(I=\mathop \smallint \limits_{ - 1}^1 {e^{\left| x \right|}}dx.\)

\(I= \mathop \smallint \limits_{ - 1}^0 {e^{ - x}}dx + \mathop \smallint \limits_0^1 {e^x}dx\)

\(I= \left[ { - {e^{ - x}}} \right]_{-1}^0 + \left[ {{e^x}} \right]_0^1\)

I = [-e-0 + e1] + [e1 - e0]

I = -1 + e1 + e - 1

I = 2 (e - 1)

A parametric curve defined by \(x = \cos \left( {\frac{{\pi u}}{2}} \right),y = \sin \left( {\frac{{\pi u}}{2}} \right)\)in the range of 0 ≤ u ≤ 1 is rotated about the X – axis by 360 degrees. Area of the surface generated is

  1. \(\frac{\pi }{2}\)
  2. π

Answer (Detailed Solution Below)

Option 3 : 2π

Definite Integrals Question 9 Detailed Solution

Download Solution PDF

Concept:

\(x = \cos \left( {\frac{{\pi u}}{2}} \right),\;y = \sin \left( {\frac{{\pi u}}{2}} \right)\)

\({x^2} + {y^2} = {\cos ^2}\left( {\frac{{\pi u}}{2}} \right) + {\sin ^2}\left( {\frac{{\pi u}}{2}} \right) = 1\)

So it represents an equation of circle in x-y plane.

Given 0 ≤ u ≤ 1

So, 0 ≤ x ≤ 1,  0 ≤ y ≤ 1

i.e., 0 ≤ θ ≤ π/2

30

So we get a quarter circle in x-y plane and by revolving it 360°, we get a hemisphere.

Area of hemi-sphere = 2π(1)2 = 2π

A parabola x = y2 with 0 ≤ x ≤ 1 is shown in the figure. The volume of the solid of rotation obtained by rotating the shaded area by 360° around the x-axis is

GATE ME 2019 Shift 1 Solution writing 8Qs images Vivek  D 1

  1. \(\frac{\pi }{4}\)
  2. \(\frac{\pi }{2}\)
  3. π

Answer (Detailed Solution Below)

Option 2 : \(\frac{\pi }{2}\)

Definite Integrals Question 10 Detailed Solution

Download Solution PDF

Concept:

Volume of the solid of rotation obtained by rotating the shaded area by 360° around the x-axis is asked,

there is a direct relation for this;

 \({\forall _1} = \smallint \pi {y^2}dx\)…1)

Calculation:

Given area;

F1 V.S. N.J. 13.09.2019 D 1

Using (1); Volume of solid of rotation can be calculated by:

\({\forall _1} = \mathop \smallint \nolimits_0^1 \pi xdx\)

\( = \pi \mathop \smallint \nolimits_0^1 xdx = \pi \left\{ {\frac{{{x^2}}}{2}} \right\}_0^1 \)

\(= \frac{\pi }{2}\left\{ {1 - 0} \right\}\)

\({\forall _1} = \frac{\pi }{2}units;\)

Key points:

In the given problem, the volume is generated by revolving the area by 360° about the x-axis.

But if rotation/revolution is about the y-axis, then the volume of solid of rotation is calculated by:

\({\forall _2} = \smallint \pi {x^2}dy\) …2)

So, always be careful about which axis rotation is asked.

Depending upon that, you should use either 1) or 2).

Let f be a real-valued function of a real variable defined as f(x) = x – [x], where [x] denotes the largest integer less than or equal to x. The value of \(\mathop \smallint \limits_{0.25}^{1.25} f\left( x \right)dx\) is _______ (up to 2 decimal places).

Answer (Detailed Solution Below) 0.49 - 0.51

Definite Integrals Question 11 Detailed Solution

Download Solution PDF

f(x) = x – [x]

for 0.25 < x < 1, f(x) = x

for 1 < x < 1.25, f(x) = x – 1

\(\mathop \smallint \limits_{0.25}^{1.25} f\left( x \right)dx = \mathop \smallint \limits_{0.25}^1 x\;dx + \mathop \smallint \limits_1^{1.25} \left( {x - 1} \right)dx\)

\(= {\left[ {\frac{{{x^2}}}{2}} \right]_{0.25}}^1 + {\left[ {\frac{{{x^2}}}{2} - x} \right]_1}^{1.25}\)

\(= \frac{1}{2}\left[ {1 - \frac{1}{{16}}} \right] + \left[ {\left( {\frac{{25}}{{32}} - \frac{5}{4}} \right) - \left( {\frac{1}{2} - 1} \right)} \right]\)

\(= \frac{1}{2}\left[ {\frac{{15}}{{16}}} \right] + \left[ {\frac{{25}}{{32}} - \frac{5}{4} + \frac{1}{2}} \right]\)

\(= \frac{{15 + 25 - 40 + 16}}{{32}} = 0.5\)

If for non-zero x, if \(af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 25\) where a ≠ b then \(\mathop \smallint \limits_1^2 f\left( x \right)dx\) is

  1. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\)
  2. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\)
  3. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {2\;ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\)
  4. \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) - \frac{{47b}}{2}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\)

Definite Integrals Question 12 Detailed Solution

Download Solution PDF

Given x as non- zero,

\(af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 25\)       ---(1)

Consider x as 1/x

\(af\left( {\frac{1}{x}} \right) + bf\left( {\frac{1}{{\frac{1}{x}}}} \right) = x - 25\)

\(af\left( {\frac{1}{x}} \right) + bf\left( x \right) = x - 25\)       ---(2)

Multiply equation 1 by a and 2 by b and subtract both

\({a^2}f\left( x \right) + abf\left( {\frac{1}{x}} \right) - abf\left( {\frac{1}{x}} \right) - {b^2}f\left( x \right) = \frac{a}{x} - 25a - bx + 25b\)

\({a^2}f\left( x \right) - {b^2}f\left( x \right) = \frac{a}{x} - 25a - bx + 25b\)

\(f\left( x \right) = \frac{a}{{x\left( {{a^2} - {b^2}} \right)}} - \frac{{bx}}{{{a^2} - {b^2}}} - \frac{{25\left( {a - b} \right)}}{{{a^2} - {b^2}}}\)

\(\mathop \smallint \limits_1^2 f\left( x \right)dx = \frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {\ln 2 - 25} \right) + \frac{{47b}}{2}} \right]\)

Solve:

\(\int_{\rm{0}}^{\frac{{\rm{\pi }}}{{\rm{2}}}} {\frac{{{\rm{f(x)}}}}{{{\rm{f(x) \,+\, f}}\left( {\frac{{\rm{\pi }}}{{\rm{2}}}\,{\rm{ - }}\,{\rm{x}}} \right)}}{\rm{dx}}} \) = ?

  1. π/2
  2. 1
  3. 0
  4. π/4

Answer (Detailed Solution Below)

Option 4 : π/4

Definite Integrals Question 13 Detailed Solution

Download Solution PDF

Concept:

\(\int_a^b f(x)dx = f(a + b - x)dx\)

Calculation:

⇒ Let, I = \(\int \limits_0^\frac{π}{2} \frac{f(x)}{f(x) + f{(\frac{π}{2} - x)}}dx\)    ----- equation(1)

⇒ I = \(\int \limits_0^\frac{π}{2} \frac{f(\frac{π}{2}- x )}{f(\frac{π}{2} - x) + f{(\frac{π}{2} -(\frac{π}{2} - x))}}dx\)

⇒ I = \(\int \limits_0^\frac{π}{2} \frac{f(\frac{π}{2}- x )}{f(x) + f{(\frac{π}{2} - x)}}dx\)     ---- equation(2)

On adding equation (1) and (2)

⇒ 2I = \(\int \limits_0^\frac{π}{2} \frac{ f(x) + f(\frac{π}{2}- x )}{f(x) + f{(\frac{π}{2} - x)}}dx\)

⇒ 2I = \(\int \limits_0^\frac{π}{2} dx\)

⇒ 2I = \(\frac{π}{2}\)

⇒ I = \(\frac{π}{4}\)

∴ The value of \(\int_{\rm{0}}^{\frac{{\rm{\pi }}}{{\rm{2}}}} {\frac{{{\rm{f(x)}}}}{{{\rm{f(x) \,+\, f}}\left( {\frac{{\rm{\pi }}}{{\rm{2}}}\,{\rm{ - }}\,{\rm{x}}} \right)}}{\rm{dx}}} \) is \(\frac{π}{4}\)

If \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = k\pi ,\) then the value of k is equal to ______.

Answer (Detailed Solution Below) 4

Definite Integrals Question 14 Detailed Solution

Download Solution PDF

Concept:

Following steps to solve the equation \(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = k\pi ,\)

  1. To remove the modulus
  2. To keep sin x positive in the interval 0 to π to 2π and to keep the sin x negative in the interval.This is because x in the above equation is always positive but the value sinx changes in the two mentioned intervals.

 

Explanation:

Solving the equation as per the steps,

\(\mathop \smallint \nolimits_0^{2\pi } \left| {x\;sin\;x} \right|dx = \mathop \smallint \nolimits_0^\pi xsinxdx + \left( { - \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx} \right)\)

\(= \mathop \smallint \nolimits_0^\pi xsinxdx - \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx\)

Keeping u = x, du = dx, dv = sinxdx, so v = - cosx,

\(= \mathop \smallint \nolimits_0^\pi udv = uv - \mathop \smallint \nolimits_0^\pi vdu\)

\( = \mathop \smallint \nolimits_0^\pi xsinxdx = \left[ { - xcosx} \right]_0^\pi + \mathop \smallint \nolimits_0^\pi cosxdx\;\)

\( = \pi + \left[ {sinx} \right]_0^\pi \)

Now, repeating the same with \(- \mathop \smallint \nolimits_\pi ^{2\pi } xsinxdx\), we get -3

Hence, π - (-3π) = 4π

Therefore, k = 4

The value of the following definite integral is ______ (round off to three decimal places)

\(\underset{1}{\overset{e}{\mathop \int }}\,\left( x\ln x \right)dx\)

Answer (Detailed Solution Below) 2.090 - 2.104

Definite Integrals Question 15 Detailed Solution

Download Solution PDF

Concept:

Use integration by parts for solving this problem.

Calculation:

\(\mathop{\int }_{1}^{e}\left( logx~x \right)dx\)

\(=\left\{ \log x.\frac{{{x}^{2}}}{2} \right\}_{1}^{e}-\mathop{\int }_{1}^{e}\frac{1}{x}.\frac{{{x}^{2}}}{2}dx\) 

\(=\left\{ \frac{{{x}^{2}}\log x}{2} \right\}_{1}^{e}-\frac{1}{2}\mathop{\int }_{1}^{e}xdx\) 

\(=\left\{ \frac{{{x}^{2}}\log x}{2} \right\}_{1}^{e}-\left\{ \frac{{{x}^{2}}}{4} \right\}_{1}^{e}\) 

\(=\left\{ \frac{{{e}^{2}}\log e}{2}-\frac{\log 1}{2} \right\}-\left\{ \frac{{{e}^{2}}}{4}-\frac{1}{4} \right\}\) 

\(=\frac{{{e}^{2}}}{2}-\frac{{{e}^{2}}}{4}+\frac{1}{4}\) 

\(\Rightarrow \frac{{{e}^{2}}+1}{4}=2.097\)

Get Free Access Now
Hot Links: teen patti master new version teen patti rummy 51 bonus teen patti chart teen patti list