Properties of Vectors MCQ Quiz - Objective Question with Answer for Properties of Vectors - Download Free PDF
Last updated on Apr 22, 2025
Latest Properties of Vectors MCQ Objective Questions
Properties of Vectors Question 1:
The area of the parallelogram determined by the vectors î + 2ĵ +3k̂ and 3î - 2ĵ + k̂ is
Answer (Detailed Solution Below)
Properties of Vectors Question 1 Detailed Solution
Concept:
Area of parallelogram determined by the the vectors \(\vec a\) and \(\vec b\) is |\(\vec a\) × \(\vec b\)|.
Explanation:
Given
\(\vec a\) = î + 2ĵ +3k̂ and \(\vec b\) = 3î - 2ĵ + k̂
So,
\(\vec a\) × \(\vec b\) = \(\begin{vmatrix}\hat i&\hat j&\hat k\\1&2&3\\3&-2&1\end{vmatrix}\)
= î(2 + 6) + ĵ(9 - 1) + k̂(-2 - 6) = 8î + 8ĵ - 8k̂
Hence area of the parallelogram
= |\(\vec a\) × \(\vec b\)| = \(\sqrt{8^2+8^2+(-8)^2}\) = \(\sqrt{64+64+64}\) = 8√3
Option (1) is true.
Properties of Vectors Question 2:
The sine of the angle between vectors \(\vec a = 2\hat i - 6\hat j - 3\hat k\) and \(\vec b = 4\hat i + 3\hat j - \hat k\) is
Answer (Detailed Solution Below)
Properties of Vectors Question 2 Detailed Solution
Concept:
If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right|\cos \theta\)
Calculation:
Given: \(\vec a = 2\hat i - 6\hat j - 3\hat k\) and \(\vec b = 4\hat i + 3\hat j - \hat k\)
\(\left| {\vec a} \right| = 7,\;\left| {\vec b} \right| = \sqrt {26} \;and\;\vec a \cdot \;\vec b = - 7\)
\(\Rightarrow \;\cos \theta = \frac{{\vec a \cdot \;\vec b}}{{\left| {\vec a} \right| \times \left| {\vec b} \right|}} = \frac{{ - \;7}}{{7 \times \sqrt {26} }} = - \frac{1}{{\sqrt {26} }}\)
\( \Rightarrow \;{\sin ^2}\theta = 1 - {\cos ^2}\theta = 1 - \frac{1}{{26}} = \frac{{25}}{{26}}\)
\(\Rightarrow \;\sin \theta = \frac{5}{{\sqrt {26} }}\)Properties of Vectors Question 3:
Three vectors \(\overrightarrow{P}, \overrightarrow{Q}\) and \(\overrightarrow{R}\) are shown in the figure. Let S be any point on the vector \(\overrightarrow{R}\). The distance between the points P and S is \(b|\overrightarrow{R}|\). The general relation among vectors \(\overrightarrow{P}, \overrightarrow{Q}\) and \(\overrightarrow{S}\) is
Answer (Detailed Solution Below)
Properties of Vectors Question 3 Detailed Solution
Calculation
From triangular law of vector addition, we get \(OP+PS = OS\)
\(\therefore \vec P+b|\vec R|\dfrac{\vec R}{|\vec R|}=\vec{S}\)
⇒ \(\vec P+b{\vec R}=\vec{S}\)
But \(\vec{R} = \vec{Q} - \vec{P}\) (Given)
⇒ \(\vec P+b(\vec Q-\vec P)=\vec{S}\)
⇒ \(\vec{S} =(1-b) \vec P+b \vec Q\)
Hence option 3 is correct
Properties of Vectors Question 4:
If \(\rm \vec \alpha\) is a unit vector, \(\rm \vec \beta=\hat i+\hat j-\hat k, \vec \gamma=\hat i+\hat k\), then the maximum value of \(\rm |\vec \alpha \vec \beta \vec \gamma|\) is
Answer (Detailed Solution Below)
Properties of Vectors Question 4 Detailed Solution
Calculation
\( [\vec{a} \ \vec{b} \ \vec{y}] = (\vec{a} \times \vec{b}) \cdot \vec{y} = \vec{a} \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ 1 & 0 & 1 \end{vmatrix} \)
\( \vec{a} = (i + 2j - k) \) is maximum → angle between \( \vec{a} \) & \( i + 2j - k \) will be 0
⇒ \( [\vec{a} \ \vec{b} \ \vec{y}] = |\vec{a}||i + 2j - k| = \sqrt{6} \)
Hence option 4 is correct
Properties of Vectors Question 5:
What is the locus of the point (x, y) for which the vectors \(\rm (\hat i-x\hat j-2\hat k)\) and \(\rm (2\hat i+\hat j+y\hat k)\) are orthogonal?
Answer (Detailed Solution Below)
Properties of Vectors Question 5 Detailed Solution
Calculation:
We know that if two vectors \(\rm\overrightarrow{a}\&\overrightarrow{b}\) are orthogonal then, \(\rm\overrightarrow{a}⋅\overrightarrow{b}\) = 0
since, (î − xĵ − 2k̂) & (2î + ĵ + yk̂) are orthogonal then, (î − xĵ − 2k̂)⋅(2î + ĵ + yk̂) = 0
⇒ 2 − x − 2y = 0
⇒ x + 2y = 2 represents a straight line.
Hence, locus of point (x, y) is a straight line.
Top Properties of Vectors MCQ Objective Questions
The sine of the angle between vectors \(\vec a = 2\hat i - 6\hat j - 3\hat k\) and \(\vec b = 4\hat i + 3\hat j - \hat k\) is
Answer (Detailed Solution Below)
Properties of Vectors Question 6 Detailed Solution
Download Solution PDFConcept:
If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right|\cos \theta\)
Calculation:
Given: \(\vec a = 2\hat i - 6\hat j - 3\hat k\) and \(\vec b = 4\hat i + 3\hat j - \hat k\)
\(\left| {\vec a} \right| = 7,\;\left| {\vec b} \right| = \sqrt {26} \;and\;\vec a \cdot \;\vec b = - 7\)
\(\Rightarrow \;\cos \theta = \frac{{\vec a \cdot \;\vec b}}{{\left| {\vec a} \right| \times \left| {\vec b} \right|}} = \frac{{ - \;7}}{{7 \times \sqrt {26} }} = - \frac{1}{{\sqrt {26} }}\)
\( \Rightarrow \;{\sin ^2}\theta = 1 - {\cos ^2}\theta = 1 - \frac{1}{{26}} = \frac{{25}}{{26}}\)
\(\Rightarrow \;\sin \theta = \frac{5}{{\sqrt {26} }}\)If \(\vec a + \vec b + \vec c = \vec 0,\;|\vec a| = 3,\;|\vec b| = 5\) and \(|\vec c| = 7\), find the angle between \(\vec a\) and \(\vec b\).
Answer (Detailed Solution Below)
Properties of Vectors Question 7 Detailed Solution
Download Solution PDFConcept:
Let the angle between \(\vec a\) and \(\vec b\)is \(\rm \theta\)
\(\rm \vec a.\vec b = 2ab cos\;\theta\)
Calculations:
consider, the angle between \(\vec a\) and \(\vec b\)is \(\rm \theta\)
Given, \(\vec a + \vec b + \vec c = \vec 0 \)
⇒\(\vec a + \vec b = - \vec c \)
⇒\(\rm |\vec a + \vec b| = |- \vec c |\)
Squaring on both side, we get
⇒\(\rm |\vec a + \vec b|^2 = |- \vec c |^2\)
⇒\(\rm |\vec a|^2 +2\;\vec a.\vec b+ |\vec b|^2 = |- \vec c |^2\)
⇒\(\rm |\vec a|^2 +|\vec b|^2+2\;ab\cos\;\theta = |- \vec c |^2\)
⇒\(\rm (3)|^2 +(5)^2+2\;(3)(5)\cos\;\theta = (7)^2\)
⇒\(\rm 30\cos\;\theta = 15\)
⇒\(\rm \cos\;\theta = \dfrac 12\)
⇒ \(\rm \theta\) = π / 3
Hence, If \(\vec a + \vec b + \vec c = \vec 0,\;|\vec a| = 3,\;|\vec b| = 5\) and \(|\vec c| = 7\), then the angle between \(\vec a\) and \(\vec b\)is π / 3
If \(|\vec a|\) = 3, \(\left| {\vec b} \right| = 4\) and \(\left| {\vec a - \vec b} \right| = 5,\) then what is the value of \(\left| {\vec a + \vec b} \right|\)?
Answer (Detailed Solution Below)
Properties of Vectors Question 8 Detailed Solution
Download Solution PDFConcept:
- \({\left| {\vec a - \vec b} \right|^2} + \;{\left| {\vec a + \vec b} \right|^2} = \;2\; \times \;\left( {{{\left| {\vec a} \right|}^2} + \;{{\left| {\vec b} \right|}^2}} \right)\)
Calculation:
Given: \(|\vec a|\) = 3, \(\left| {\vec b} \right| = 4\) and \(\left| {\vec a - \vec b} \right| = 5,\)
We know that,
\({\left| {\vec a - \vec b} \right|^2} + \;{\left| {\vec a + \vec b} \right|^2} = \;2\; \times \;\left( {{{\left| {\vec a} \right|}^2} + \;{{\left| {\vec b} \right|}^2}} \right)\)
\(\Rightarrow {5^2} + \;{\left| {\vec a + \vec b} \right|^2} = \;2\; \times \;\left( {{3^2} + \;{4^2}} \right)\)
\(\Rightarrow {\left| {\vec a + \vec b} \right|^2} = \;50 - 25 = 25\)
∴ \(\left| {\vec a + \vec b} \right| = 5\)
What is \(\left( {\vec a - \vec b} \right) \times \left( {\vec a + \vec b} \right)\)equal to?
Answer (Detailed Solution Below)
Properties of Vectors Question 9 Detailed Solution
Download Solution PDFConcept:
- \(\vec a\) and \(\vec b\) are two vectors parallel to each other ⇔ \(\vec a \times \vec b = 0\)
- Cross product of parallel vectors are zero ⇔ \(\vec a \times \vec a = 0,{\rm{\;}}\vec b \times \vec b = 0{\rm{\;and\;}}\vec c \times \vec c = 0\)
- A cross or vector product is not commutative ⇔ \(\vec a \times \vec b = - {\rm{\;}}\vec b \times \vec a\)
Calculation:
We have to find the value of \(\left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right)\)
\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;\vec a\;}} \times {\rm{\;\vec a}} + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;\vec b\;}} \times {\rm{\;\vec a}} - {\rm{\;\vec b\;}} \times {\rm{\;\vec b}}\)
We know that \({\rm{\vec a\;}} \times {\rm{\;\vec b}} = - {\rm{\;\vec b\;}} \times {\rm{\;\vec a}}\)
\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;}}0 + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} + {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;}}0\) \(\because \left( {{\rm{\vec a\;}} \times {\rm{\;\vec a}} = \;{\rm{\vec b\;}} \times {\rm{\;\vec b}} = 0} \right)\)
\(\Rightarrow \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) = {\rm{\;}}2\;\left( {{\rm{\;\vec a\;}} \times {\rm{\;\vec b}}} \right)\)
∴ Option 3 is correct.
What is the value of λ for which the vectors \(\rm 2\hat i - 5\hat j - \hat k\) and \(\rm -\hat i + 4 \hat j + \lambda\hat k\) are perpendicular?
Answer (Detailed Solution Below)
Properties of Vectors Question 10 Detailed Solution
Download Solution PDFConcept:
If vectors \(\rm \vec a\;and\;\vec b\) are perpendicular then \(\rm \vec a \cdot \;\vec b = 0\)
Calculation:
Given: \(\rm 2\hat i - 5\hat j - \hat k\) and \(\rm -\hat i + 4 \hat j + λ\hat k\) are perpendicular
Let \(\rm \vec a = 2\hat i - 5\hat j - \hat k\) and \(\rm \vec b = -\hat i + 4 \hat j + λ\hat k\)
We know that, If vectors \(\rm \vec a\;and\;\vec b\) are perpendicular then \(\rm \vec a \cdot \;\vec b = 0\)
\(\rm \vec a \cdot \vec b = ( 2\hat i - 5\hat j - \hat k) \cdot (-\hat i + 4 \hat j + λ\hat k) = 0\)
⇒ -2 - 20 - λ = 0
⇒ -22 - λ = 0
∴ λ = -22
If the vectors \(a\hat i + \hat j + \hat k,\;\hat i + b\hat j + \hat k\) and \(\hat i + \hat j + c\hat k\;\left( {a,\;b,\;c \ne 1} \right)\) are coplanar, then the value of \(\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}}\) is equal to
Answer (Detailed Solution Below)
Properties of Vectors Question 11 Detailed Solution
Download Solution PDFConcept:
Scaler triple product of the vectors:
The scaler triple product of the vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) is given by:
\({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = {\rm{\;}}\left| {\begin{array}{*{20}{c}} {{{\rm{x}}_1}}&{{{\rm{y}}_1}}&{{{\rm{z}}_1}}\\ {{{\rm{x}}_2}}&{{{\rm{y}}_2}}&{{{\rm{z}}_2}}\\ {{{\rm{x}}_3}}&{{{\rm{y}}_3}}&{{{\rm{z}}_3}} \end{array}} \right|\)Coplaner vectors:
Three vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) are said to be coplaner if the scaler triple product \({\bf{\bar A}} \cdot \left[ {{\bf{\bar B}} \times {\bf{\bar C}}} \right] = 0.\)
Solution:
Let the given vectors be \({\rm{\bar A}} = {\rm{a}}\hat i + \;\hat j + {\rm{\;}}\hat k,\;\bar B = \;\hat i + \;b\hat j + \hat k\) and \({\rm{\bar C}} = {\rm{\;}}\hat i + \;\hat j + {\rm{c}}\hat k\).
It is given that the vectors are coplaner therefore the scaler triple product \({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = 0.\)
Therefore,
\(\left| {\begin{array}{*{20}{c}} {\rm{a}}&1&1\\ 1&{\rm{b}}&1\\ 1&1&{\rm{c}} \end{array}} \right| = 0\)
Perform the coloumn operation C1 – C2 as follows:
\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&1&1\\ {1 - {\rm{b}}}&{\rm{b}}&1\\ 0&1&{\rm{c}} \end{array}} \right| = 0\)
Now perform another coloum operation C2 – C3 as follows:
\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&0&1\\ {1 - {\rm{b}}}&{{\rm{b}} - 1}&1\\ 0&{1 - {\rm{c}}}&{\rm{c}} \end{array}} \right| = 0\)
Take (1 - a)(1 - b)(1 - c) common. Note that it is given that a,b,c ≠ 0 therefore this action is jstified.
\(\left( {1 - {\rm{a}}} \right)\left( {1 - {\rm{b}}} \right)\left( {1 - {\rm{c}}} \right)\left| {\begin{array}{*{20}{c}} { - 1}&0&{\frac{1}{{1 - {\rm{a}}}}}\\ 1&{ - 1}&{\frac{1}{{1 - {\rm{b}}}}}\\ 0&1&{\frac{{\rm{c}}}{{1 - {\rm{c}}}}} \end{array}} \right| = 0\)
Since a, b, c ≠ 0 therefore (1 - a)(1 - b)(1 - c) ≠ 0.Therefore the determinant has to be zero.
\( - 1\left( {\frac{{\rm-{c}}}{{1 - {\rm{c}}}} - {\rm{}}\frac{1}{{1 - {\rm{b}}}}} \right) + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)
\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{{\rm{c}}}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)
Simplify the above expression as follows:
\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} - {\rm{\;}}1 + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)
\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\)
Therefore, \(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\).If a, b, c are non-coplanar then find the value of 2[a b c] + [b a c] =
Answer (Detailed Solution Below)
Properties of Vectors Question 12 Detailed Solution
Download Solution PDFConcept:
- If a, b, c are coplanar then [a b c] = 0
- Three vectors are permuted in the same cyclic order, the value of the scalar triple product remains the same. ⇒ [a b c] = [b c a] = [c a b]
Calculation:
Here, a, b, c are non-coplanar
To find: 2[a b c] + [b a c] =?
⇒ 2[a b c] + [b a c]
= 2 [a, b, c] - [a, b, c] (∵ [b a c] = -[a b c])
= [a, b, c]
Hence, option (2) is correct.
If \(\rm |\vec a+\vec b|=|\vec a-\vec b|\), then which of the following is/are correct?
1. Vectors a and b are orthogonal
2. \(\rm \vec a \times \vec b=0\) (\(\rm \vec a = \vec b \ne 0\))
Select the correct answer using the code given below
Answer (Detailed Solution Below)
Properties of Vectors Question 13 Detailed Solution
Download Solution PDFConcept:
If vectors a and b are orthogonal, then \(\rm \vec a.\vec b=0\)
Calculation:
Here, \(\rm |\vec a+\vec b|=|\vec a-\vec b|\)
Squaring both sides we get,
\(\rm |\vec a|^2 + |\vec b|^2 + 2 \vec a.\vec b=|\vec a|^2 + |\vec b|^2 - 2 \vec a.\vec b\)
⇒4\(\rm \vec a.\vec b\)= 0
⇒\(\rm \vec a.\vec b\)= 0
So, Vectors a and b are orthogonal
As we know, if \(\rm \vec a.\vec b = 0\) then \(\rm \vec a \times \vec b \ne 0\)
So, only (1) is correct.
Hence, option (1) is correct.
Consider the following statements:
1. The cross product of two unit vectors is always a unit vector.
2. The dot product of two unit vectors is always unity.
3. The magnitude of sum of two unit vectors is always greater than the magnitude of their difference.
Which of the above statements are not correct?
Answer (Detailed Solution Below)
Properties of Vectors Question 14 Detailed Solution
Download Solution PDFConcept:
The cross product of two vectors \(\vec a \ and \ \vec b \)is given by \(\vec a \times \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right|\sin θ \;\hat n\) and \(|\vec a \times \vec b| = \left| {\vec a} \right| \cdot \left| {\vec b} \right|\sin θ \;\)
The scalar product of two vectors \(\vec a \ and \ \vec b \)is given by \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right|\cos θ \)
If \(\vec a\) is a unit vector then \(|\vec a| = 1\)
Calculations:
Statement 1: The cross product of two unit vectors is always a unit vector.
Let \(\vec a\) and \(\vec b\) are two unit vectors.
i.e \(|\vec a| = 1 \ and \ |\vec b| = 1\)
As we know that, the cross product of two vectors \(\vec a \ and \ \vec b \)is given by \(\vec a \times \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right|\sin θ \;\hat n\) and \(|\vec a \times \vec b| = \left| {\vec a} \right| \cdot \left| {\vec b} \right|\sin θ \;\)
⇒ \(|\vec a \times \vec b| = \left| {\vec a} \right| \cdot \left| {\vec b} \right|\sin θ \; = sin θ \)
The range of sin θ is [-1, 1]
So, it is not necessarily true that the cross product of two unit vectors is always a unit vector.
Hence, statement 1 is false.
Statement 2: The dot product of two unit vectors is always unity.
Let \(\vec a\) and \(\vec b\) are two unit vectors.
i.e \(|\vec a| = 1 \ and \ |\vec b| = 1\)
As we know that, the scalar product of two vectors \(\vec a \ and \ \vec b \)is given by \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right|\cos θ \)
⇒ \(|\vec a \cdot \;\vec b |= cos \ θ \)
The range of cos θ is [-1, 1].
So, it is not necessarily true that the dot product of two unit vectors is always a unit vector.
Hence, statement 2 is false.
Statement 3: The magnitude of sum of two unit vectors is always greater than the magnitude of their difference.
Let \(\vec a \ = \hat i \ and \ \ \vec b = \hat j\)
As we can see that, the vectors \(\vec a\) and \(\vec b\) are two unit vectors
⇒ \(|\hat i + \hat j| = \sqrt 2\) and \(|\hat i - \hat j| = \sqrt 2\)
⇒ \(|\vec a + \vec b| = |\vec a - \vec b|\)
So, statement 3 is also false.
Hence, the correct option is 4.
In a triangle ABC, if taken in order, consider the following statements;
1) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \vec 0\)
2) \(\overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {CA} = \vec 0\)
3) \(\overrightarrow {AB} - \overrightarrow {BC} + \overrightarrow {CA} = \vec 0\)
4) \(\overrightarrow {BA} - \overrightarrow {BC} + \overrightarrow {CA} = \vec 0\)
How many of the above statements are correct?
Answer (Detailed Solution Below)
Properties of Vectors Question 15 Detailed Solution
Download Solution PDFConcept:
Triangle law of vector addition states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.
From above statement,
\(\overrightarrow {{\rm{AB}}} + \overrightarrow {{\rm{BC}}} = \overrightarrow {{\rm{AC}}} \)
\( \Rightarrow \overrightarrow {{\rm{AB}}} + \overrightarrow {{\rm{BC}}} = - \overrightarrow {{\rm{CA}}} \)
\(\therefore \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \vec 0\)
Only statement (1) is correct