Properties of Vectors MCQ Quiz in తెలుగు - Objective Question with Answer for Properties of Vectors - ముఫ్త్ [PDF] డౌన్లోడ్ కరెన్
Last updated on Mar 13, 2025
Latest Properties of Vectors MCQ Objective Questions
Top Properties of Vectors MCQ Objective Questions
Properties of Vectors Question 1:
If the magnitude of the sum of two non-zero vectors is equal to the magnitude of their difference, then which one of the following is correct?
Answer (Detailed Solution Below)
Properties of Vectors Question 1 Detailed Solution
Concept:
Let \(\vec{u}\) be a vector then \({{\left| {\vec{u}} \right|}^{2}}=~\vec{u}\cdot ~\vec{u}\)
Calculation:
Let \(\vec{u}~and~\vec{v}\) be two non-zero vectors.
Given: The magnitude of the sum of two non-zero vectors is equal to the magnitude of their difference.
\(\Rightarrow \left| \vec{u}+~\vec{v} \right|=~\left| \vec{u}-~\vec{v} \right|\)
\(\Rightarrow {{\left| \vec{u}+~\vec{v} \right|}^{2}}=~{{\left| \vec{u}-~\vec{v} \right|}^{2}}\)
As we know that, if \(\vec{u}\) be a vector then \({{\left| {\vec{u}} \right|}^{2}}=~\vec{u}\cdot ~\vec{u}\)
\(\Rightarrow \left( \vec{u}+~\vec{v} \right)\cdot \left( \vec{u}+~\vec{v} \right)=\left( \vec{u}-~\vec{v} \right)\cdot \left( \vec{u}-~\vec{v} \right)\)
\(\Rightarrow {{\left| {\vec{u}} \right|}^{2}}+{{\left| {\vec{v}} \right|}^{2}}+2~\left| {\vec{u}} \right|\times \left| {\vec{v}} \right|\times \cos \theta =~{{\left| {\vec{u}} \right|}^{2}}+{{\left| {\vec{v}} \right|}^{2}}-2~\left| {\vec{u}} \right|\times \left| {\vec{v}} \right|\times \cos \theta \)
\(\Rightarrow 4\times ~\left| {\vec{u}} \right|\times \left| {\vec{v}} \right|\times \cos \theta =0\)
∵ \(\vec{u}~and~\vec{v}\) be two non-zero vectors ⇒ \(\left| {\vec{u}} \right|\times \left| {\vec{v}} \right|\ne 0\)
⇒ cos θ = 0 ⇒ θ = 90°
Hence, \(\vec{u}~and~\vec{v}\) are perpendicular to each other.Properties of Vectors Question 2:
If the points (-1, -1, 2), (2, k, 5) and (3, 3, 6) are collinear, then find the value of k.
Answer (Detailed Solution Below)
Properties of Vectors Question 2 Detailed Solution
Concept:
Conditions of collinear vector:
- Three points with position vectors \(\vec a,\;\vec b\;and\;\vec c\) are collinear if and only if the vectors \(\left( {\vec a - \vec b} \right)\) and \(\left( {\vec a\; - \vec c} \right)\) are parallel. ⇔ \(\left( {\vec a - \vec b} \right) = \lambda \left( {\vec a\; - \vec c} \right)\)
- If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)
Calculation:
Let the given points be A (−1, −1, 2), B (2, K, 5), C (3, 11, 6).
Then \(\overrightarrow {{\rm{AB}}} = \left( {2 + 1} \right){\rm{\vec i}} + \left( {{\rm{k}} + 1} \right){\rm{\vec j}} + \left( {5 - 2} \right){\rm{\vec k}} = 3{\rm{\vec i}} + {\rm{\;}}\left( {{\rm{k}} + 1} \right){\rm{\vec j\;}} + 3{\rm{\vec k}}\)
And \(\overrightarrow {{\rm{AC}}} = \left( {3 + 1} \right){\rm{\vec i}} + \left( {3 + 1} \right){\rm{\vec j}} + \left( {2 - 2} \right){\rm{\vec k}} = 4{\rm{\vec i}} + {\rm{\;}}4{\rm{\vec j\;}} + 4{\rm{\vec k}}\)
Now, if A, B and C are collinear, then \(\overrightarrow {{\rm{AB}}} {\rm{\;}} = {\rm{\;\lambda \;}}\overrightarrow {{\rm{AC}}} \)
\(\Rightarrow 3{\rm{\vec i}} + {\rm{\;}}\left( {{\rm{k}} + 1} \right){\rm{\vec j\;}} + 3{\rm{\vec k}} = \;{\rm{\lambda \;}}\left( {4{\rm{\vec i}} + {\rm{\;}}4{\rm{\vec j\;}} + 4{\rm{\vec k}}} \right)\)
Comparing the coefficient of vector i, we get
⇒ 3 = 4 λ
∴ λ = 3/4
Now, comparing the coefficient of vector j, we get
⇒ (k + 1) = 4 λ
⇒ k + 1 = 4 × (3/4)
⇒ k + 1 = 3
∴ k = 2
Alternate solution:
We know that, If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then \(\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&{{z_1}}\\ {{x_2}}&{{y_2}}&{{z_2}}\\ {{x_3}}&{{y_3}}&{{z_3}} \end{array}} \right| = 0\)
Given (-1, -1, 2), (2, k, 5) and (3, 3, 6) are collinear
∴ \(\left| {\begin{array}{*{20}{c}} { - 1}&{ - 1}&2\\ 2&k&5\\ 3&3&6 \end{array}} \right| = 0\)
⇒ -1 (6k – 15) – (-1) (12 – 15) + 2 (6 – 3k) = 0
⇒ -6k + 15 – 3 + 12 – 6k = 0
⇒ 12k = 24
∴ k = 2
Properties of Vectors Question 3:
If \(\vec a\) and \(\vec b\) are two non - zero vectors and their dot product 0 then, They are -
Answer (Detailed Solution Below)
Properties of Vectors Question 3 Detailed Solution
Dot product of two vectors \( = \vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right|\) cos α
If \(\vec a\) and \(\vec b\) are non zero vectors than if Dot product is to be 0 then.
Cos α = 0
α = 90°
\( \Rightarrow \vec a \bot \vec b\)
Properties of Vectors Question 4:
The area of the parallelogram determined by the vectors î + 2ĵ +3k̂ and 3î - 2ĵ + k̂ is
Answer (Detailed Solution Below)
Properties of Vectors Question 4 Detailed Solution
Concept:
Area of parallelogram determined by the the vectors \(\vec a\) and \(\vec b\) is |\(\vec a\) × \(\vec b\)|.
Explanation:
Given
\(\vec a\) = î + 2ĵ +3k̂ and \(\vec b\) = 3î - 2ĵ + k̂
So,
\(\vec a\) × \(\vec b\) = \(\begin{vmatrix}\hat i&\hat j&\hat k\\1&2&3\\3&-2&1\end{vmatrix}\)
= î(2 + 6) + ĵ(9 - 1) + k̂(-2 - 6) = 8î + 8ĵ - 8k̂
Hence area of the parallelogram
= |\(\vec a\) × \(\vec b\)| = \(\sqrt{8^2+8^2+(-8)^2}\) = \(\sqrt{64+64+64}\) = 8√3
Option (1) is true.
Properties of Vectors Question 5:
The position vector of the point which divides the join of points \(\rm2\vec{a}−3\vec{b}\) and \(\rm\vec{a}+\vec{b}\) in the ratio 3 ∶ 1 is
Answer (Detailed Solution Below)
Properties of Vectors Question 5 Detailed Solution
Concept:
The position vector of the point that divides the line joining position vectors
\(\rm\vec{p}\) and \(\rm\vec{q}\) in the ratio m:n is given by \(\frac{m\vec{q}+n\vec{p}}{m+n}\).
Calculation:
Given position vectors are \(2\rm \vec{a}-3\vec{b}\) and \( \rm \vec{a}+\vec{b}\) .
∴ The position vector of the point which divides the line joining the above points in the ratio 3: 1 is,
= \(\frac{(2\vec{a}-3\vec{b}) +3(\vec{a}+\vec{b})}{1+3}\)
= \(\frac{5\vec{a}}{4}\)
The position vector of the point which divides the join of points \(\rm2\vec{a}−3\vec{b}\) and \(\rm\vec{a}+\vec{b}\) in the ratio 3 ∶ 1 is \(\frac{5\vec{a}}{4}\).
The correct answer is option 4.
Properties of Vectors Question 6:
If three vectors 2î - ĵ + k̂, î + 2ĵ - 3k̂ and 3î + λĵ + 5k̂ are co-planar, then λ is:
Answer (Detailed Solution Below)
Properties of Vectors Question 6 Detailed Solution
Concept:
For three vectors \(\rm \vec A\), \(\rm \vec B\) and \(\rm \vec C\) to be co-planar, the volume of the parallelepiped formed by them must be 0. i.e. \(\rm [\vec A\ \vec B\ \vec C]\) = 0.
Triple Scalar Product (Box Product): is defined as: \(\rm [\vec A\ \vec B\ \vec C]=\vec A.(\vec B\times\vec C)=\begin{vmatrix} \rm a_1 & \rm a_2 & \rm a_3 \\ \rm b_1 & \rm b_2 & \rm b_3 \\\rm c_1 & \rm c_2 & \rm c_3 \end{vmatrix}\).
Calculation:
Let the three vectors be \(\rm \vec A=2\hat i - \hat j + \hat k\), \(\rm \vec B=\hat i +2 \hat j -3 \hat k\) and \(\rm \vec C=3\hat i +\lambda \hat j + 5\hat k\). For the three vectors to be co-planar, their Box Product must be 0.
⇒ \(\rm [\vec A\ \vec B\ \vec C]=0\)
⇒ \(\rm \begin{vmatrix} 2& -1 &\ \ \ 1 \\ \rm 1 &\ \ \ 2 & -3 \\ \rm 3 &\ \ \ \lambda & \ \ \ 5 \end{vmatrix}=0\)
⇒ 2[(2)(5) - (-3)(λ)] - (-1)[(5)(1) - (3)(-3)] + 1[(1)(λ) - (2)(3)] = 0
⇒ 2(10 + 3λ) + 1(5 + 9) + 1(λ - 6) = 0
⇒ 20 + 6λ + 14 + λ - 6 = 0
⇒ 7λ = -28
⇒ λ = -4.
Additional Information
For two vectors \(\rm \vec A\) and \(\rm \vec B\) at an angle θ to each other:
- Dot Product is defined as \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).
- Cross Product is defined as \(\rm \vec A\times \vec B=\vec n|\vec A||\vec B|\sin \theta\) where \(\rm \vec n\) is the unit vector perpendicular to the plane containing \(\rm \vec A\) and \(\rm \vec B\).
Volume of a parallelepiped, with vectors \(\rm \vec A\), \(\rm \vec B\) and \(\rm \vec C\) as its sides, is given by the box product of the three vectors.
- Volume = \(\rm [\vec A\ \vec B\ \vec C]\).
For three vectors \(\rm \vec A\), \(\rm \vec B\) and \(\rm \vec C\):
- Triple Cross Product: is defined as: \(\rm \vec A\times(\vec B\times\vec C)=(\vec A.\vec C)\vec B-(\vec A.\vec B)\vec C\).
Properties of Vectors Question 7:
The position vectors of three consecutive vertices of a parallelogram are i + j + k, i + 3j + 5k and 7i + 9j + 11k the position vector of the fourth vertex is
Answer (Detailed Solution Below)
Properties of Vectors Question 7 Detailed Solution
Concept:
Diagonals of a parallelogram bisect each other
Calculation:
Given:
Let A(1,1,1), B(1,3,5), C(7,9,11) and D(x,y,z) be the vertices of a parallelogram
As we know,
Diagonals of a parallelogram bisect each other
∴ midpoint of AC = midpoint of BD
\(\left( {\frac{{1 + 7}}{2},\frac{{1 + 9}}{2},\frac{{1 + 11}}{2}} \right) = \left( {\frac{{1 + x}}{2},\frac{{3 + y}}{2},\frac{{5 + z}}{2}} \right)\)
Comparing both sides, we get
1 + 7 = 1 + x
x = 7
And, 1 + 9 = 3 + y
y = 7
And, 1 + 11 = 5 + z
z = 7
∴ Position vector of fourth vertex is 7(i + j + k)
Properties of Vectors Question 8:
Let \(\left| {\vec a} \right| \ne 0,\left| {\vec b} \right| \ne 0.\)
\(\left( {\vec a + \vec b} \right).\left( {\vec a + \vec b} \right) = {\left| {\vec a} \right|^2} + {\left| {\vec b} \right|^2}\)
Holds if and only if
Answer (Detailed Solution Below)
Properties of Vectors Question 8 Detailed Solution
Concept:
- \(\vec a\) and \(\vec b\) are two vectors perpendicular to each other
- ∴ \(\vec a.{\rm{\;}}\vec b = 0\)
- \(\vec a\) and \(\vec b\) are two vectors parallel to each other
- ∴ \(\vec a \times \vec b = 0\)
Calculation:
Given:
\(\left( {\vec a + \vec b} \right).\left( {\vec a + \vec b} \right) = {\left| {\vec a} \right|^2} + {\left| {\vec b} \right|^2}\)
\( \Rightarrow \;{\left| {\vec a} \right|^2} + {\left| {\vec b} \right|^2} + 2\vec a.{\rm{\;}}\vec b = \;{\left| {\vec a} \right|^2} + {\left| {\vec b} \right|^2}\;\)
\(\Rightarrow 2\vec a.{\rm{\;}}\vec b = 0\)
\(\Rightarrow \vec a.{\rm{\;}}\vec b = 0\)
∴ \(\vec a\) and \(\vec b\) are perpendicular.
Properties of Vectors Question 9:
Consider the following statements :
1. Dot product over vector addition is distributive
2. Cross product over vector addition is distributive
3. Cross product of vectors is associative
Which of the above statements is/are correct ?
Answer (Detailed Solution Below)
Properties of Vectors Question 9 Detailed Solution
Concept:
One algebraic property of real numbers is the distributive law. The distributive law for the real numbers says: "For all real numbers x, y, and z, \(x.( y+ z)=x. y+ x.z\)
The vector dot product is distributive over addition. In general: \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\)
The vector cross product is distributive over addition. In general: \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)
Associative property: (p × q) × r = p × (q × r) (where p, q, and r are any three natural/whole numbers)
Calculation:
Let
\(\displaystyle \vec a = a_x \overline i+a_y \overline j+a_z \overline k\\\vec b = b_x \overline i+b_y \overline j+b_z \overline k\\\vec c = c_x \overline i+c_y \overline j+c_z \overline k\)
Statement I: Dot product over vector addition is distributive
We have to prove \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\)
- \(\displaystyle \vec a.( \vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k).[(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(c_x ̂ i+c_y ̂ j+c_z ̂ k)] \)
- \(\displaystyle \vec a.( \vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k).[(b_x+c_x)̂ i+(b_y+c_y)̂ j+(b_z +c_z )̂ k] \)
- \(\vec a.( \vec b+ \vec c)=\) ax (bx + cx) + ay (by + cy) + az (bz + cz)
- \(\vec a.( \vec b+ \vec c)=\) ax bx + ax cx + ay by + ay cy + az bz + az cz................................... (1)
- \(\displaystyle \vec a. \vec b+ \vec a.\vec c=(a_x ̂ i+a_y ̂ j+a_z ̂ k).(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(a_x ̂ i+a_y ̂ j+a_z ̂ k).(c_x ̂ i+c_y ̂ j+c_z ̂ k)\)
- \(\displaystyle \vec a. \vec b+ \vec a.\vec c=(a_x.b_x+a_y.b_y +a_z.b_z)+(a_x.c_x +a_y.c_y+a_z.c_z)\)
- \(\vec a. \vec b+ \vec a.\vec c=\) ax bx + ax cx + ay by + ay cy + az bz + az cz................................... (2)
- From equation (1) and (2)
- ∴ \(\vec a.( \vec b+ \vec c)=\vec a. \vec b+ \vec a.\vec c\)
Statement II: Cross product over vector addition is distributive
We have to prove \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)
- \(\displaystyle \vec a\times(\vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times[(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(c_x ̂ i+c_y ̂ j+c_z ̂ k)] \)
- \(\displaystyle \vec a\times( \vec b+ \vec c)=(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times[(b_x+c_x)̂ i+(b_y+c_y)̂ j+(b_z +c_z )̂ k] \)
- \(\vec a\times( \vec b+ \vec c)=\begin{bmatrix} \overline i & \overline j & \overline k \\[0.3em] a_x & a_y & a_z \\[0.3em] b_x+c_x &b_y+c_y & b_z+c_z \end{bmatrix}\)
- \(\vec a\times( \vec b+ \vec c)=\) ̂̂î [ay (bz + cz) - az (by + cy)] - ĵ [ax (bz + cz) - az (bx + cx)] + k̂ [ax (by + cy) - ay (bx + cx)] ............(3)
- \(\displaystyle \vec a\times \vec b+ \vec a\times\vec c=(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times(b_x ̂ i+b_y ̂ j+b_z ̂ k)+(a_x ̂ i+a_y ̂ j+a_z ̂ k)\times(c_x ̂ i+c_y ̂ j+c_z ̂ k)\)
- \(\displaystyle \vec a\times \vec b+ \vec a\times\vec c=\begin{bmatrix} ̂ i & ̂ j & ̂ k \\[0.3em] a_x & a_y & a_z \\[0.3em] b_x &b_y& b_z \end{bmatrix}+\begin{bmatrix} ̂ i & ̂ j & ̂ k \\[0.3em] a_x & a_y & a_z \\[0.3em] c_x &c_y& c_z \end{bmatrix}\)
- \((\vec a\times \vec b+\vec a\times \vec c)=\) ̂̂î [aybz - azby)] - ĵ (axbz - azbx)] + k̂ [ax by - aybx] + î [aycz - azcy)] - ĵ (axcz - azcx)] + k̂ [ax cy - aycx]
- \((\vec a\times \vec b+\vec a\times \vec c)=\) î [ay (bz + cz) - az (by + cy)] - ĵ [ax (bz + cz) - az (bx + cx)] + k̂ [ax (by + cy) - ay (bx + cx)] ..............(4)
- ∴ \(\vec a × (\vec b + \vec c) = \vec a × \vec b + \vec a × \vec c\)
Statement III: Cross product of vectors is associative
- Consider two non-zero perpendicular vectors, a and b.
- We have (a × a) × b = 0 × b = 0
- However, a × b is perpendicular to a and is not the zero vector, so
- a × (a × b) ≠ 0
- (a × a) × b ≠ a × (a × b)
- Cross product of vectors is not associative
∴ Only Statements I and II are correct.
Properties of Vectors Question 10:
For \(\rm \vec {a} \;and\; \vec{b}\) which of the following properties hold?
1. If \(\rm \vec {a} \;and\; \vec{b}\) are two vectors parallel to each other then \({\rm{\vec a}} \times {\rm{\vec b}} = 0\)
2. If \(\rm \vec {a} \;and\; \vec{b}\) are two vectors perpendicular to each other then \({\rm{\vec a}} \cdot {\rm{\vec b}} = 0\)
3. A cross product is commutative \({\rm{\vec a}} \times {\rm{\vec b}} = {\rm{\;\vec b}} \times {\rm{\vec a}}\)
Select the correct answer using code given below:
Answer (Detailed Solution Below)
Properties of Vectors Question 10 Detailed Solution
Concept:
Properties of vectors:
- If \(\rm \vec {a} \;and\; \vec{b}\) are two vectors parallel to each other then \({\rm{\vec a}} \times {\rm{\vec b}} = 0\)
- If \(\rm \vec {a} \;and\; \vec{b}\) are two vectors perpendicular to each other then \({\rm{\vec a}} \cdot {\rm{\vec b}} = 0\)
- A cross product is not commutative \({\rm{\vec a}} \times {\rm{\vec b}} = - {\rm{\;\vec b}} \times {\rm{\vec a}}\)
Hence option 1 is the correct answer.