Magnitude and Directions of a Vector MCQ Quiz in తెలుగు - Objective Question with Answer for Magnitude and Directions of a Vector - ముఫ్త్ [PDF] డౌన్లోడ్ కరెన్
Last updated on Mar 16, 2025
Latest Magnitude and Directions of a Vector MCQ Objective Questions
Top Magnitude and Directions of a Vector MCQ Objective Questions
Magnitude and Directions of a Vector Question 1:
Find the value of a - b if the vectors \(3\vec x\; + \;4\vec y - a\vec z\;and\;2b\vec x - 3\vec y\; + \;5\vec z\;\)are collinear.
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 1 Detailed Solution
Let \(\vec m = 3\vec x + 4\vec y - a\vec z\;and\;\vec n = 2b\vec x - 3\vec y\; + \;5\vec z\)
For two vectors to be collinear,
\(\vec m\; = \;\lambda \vec n\)
So, \(3\vec x\; + \;4\vec y - a\vec z = \lambda \left( {2b\vec x - 3\vec y\; + \;5\vec z} \right)\)
On comparing,
3 = 2λb, 4 = -3λ and -a = 5λ
λ = (-4)/3
a = 20/3
And b = (-9)/8
a – b = 20/3 - ((-9)/8)
a – b = 187/24Magnitude and Directions of a Vector Question 2:
Comprehension:
What is \(\left| {{\rm{\vec a}} + {\rm{\vec b}}} \right|\) equal to?
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 2 Detailed Solution
Calculation:
Here, \(\left| {{\rm{\vec c}}} \right| = 7\)
\({\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}} = \vec 0\\⇒ {\rm{\vec a}} + {\rm{\vec b}}=-{\rm{\vec c}}\\ \Rightarrow |{\rm{\vec a}}+{\rm{\vec b}}|=|{\rm{-\vec c}}|=|{\rm{\vec c}}|\)
∴\(\left| {{\rm{\vec a}} + {\rm{\vec b}}} \right| = 7\)
Hence, option (1) is correct.
Magnitude and Directions of a Vector Question 3:
Comprehension:
What is cosine of the angle between \({\rm{\vec b}}\) and \({\rm{\vec c}}\) ?
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 3 Detailed Solution
Concept:
\(\begin{aligned} |\vec{b}+\vec{c}|^{2} &=|\vec{b}|^{2}+|\vec{c}|^{2}+2 |\vec{b} |\cdot |\vec{c}|\cos θ \end{aligned}\)
Calculation:
Here, \(\left| {{\rm{\vec a}}} \right| = 3,{\rm{\;}}\left| {{\rm{\vec b}}} \right| = 5\) and \(\left| {{\rm{\vec c}}} \right| = 7\)
\({\rm{\vec a}} + {\rm{\vec b}} + {\rm{\vec c}} = \vec 0\\⇒ {\rm{\vec b}} + {\rm{\vec c}}=-{\rm{\vec a}}\)
\(\begin{aligned} |\vec{b}+\vec{c}|^{2} &=|\vec{b}|^{2}+|\vec{c}|^{2}+2 |\vec{b} |\cdot |\vec{c}|\cos θ \end{aligned}\)
⇒\(\begin{aligned} |-\vec{a}|^{2} &=|\vec{b}|^{2}+|\vec{c}|^{2}+2 |\vec{b} |\cdot |\vec{c}|\cos θ \end{aligned}\)
⇒ 32 = 52 + 72 + 2(5)(7) cos θ
⇒ 9 - 25 - 49 = 70 cos θ
⇒ cos θ = (-65/70) = (-13/14)
Hence, option (4) is correct.
Magnitude and Directions of a Vector Question 4:
Let \(\vec{\text{a}}\), \(\vec{\text{b}}\) and \(\vec{\text{c}}\) be unit vectors lying on the same plane. What is \(\{(3\vec{\text{a}} + 2\vec{\text{b}}) × (5\vec{\text{a}} − 4\vec{\text{c}})\}⋅(\vec{\text{b}} + 2\vec{\text{c}})\) equal to ?
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 4 Detailed Solution
Concept:
If \(\vec{\text{a}}\) is unit vector, then |\(\vec{\text{a}}\)| = 1
For any vector \(\vec{\text{a}}\), \(\vec{\text{a}}\).\(\vec{\text{a}}\) = |\(\vec{\text{a}}\)|2
For any vector \(\vec{\text{a}}\), \(\vec{\text{a}}\) × \(\vec{\text{a}}\) = 0
For any two vectors \(\vec{\text{a}}\) and \(\vec{\text{b}}\), \(\vec{\text{a}}.\vec{\text{b}}=\vec{\text{b}}.\vec{\text{a}}\)
For any two vectors \(\vec{\text{a}}\) and \(\vec{\text{b}}\), \(\vec{\text{a}}×\vec{\text{b}}=-(\vec{\text{b}}×\vec{\text{a}})\)
If \(\vec{\text{a}}\), \(\vec{\text{b}}\) and \(\vec{\text{c}}\) are three coplanar vectors, then their scalar triple product is 0
\(\vec{\text{a}}.(\vec{\text{b}} \times \vec{\text{c}})= \vec{\text{b}}.(\vec{\text{c}} \times \vec{\text{a}})= \vec{\text{c}}.(\vec{\text{a}} \times \vec{\text{b}}) = 0\)
If any two vectors in scalar triple product are equal, then scalar triple product is 0.
Calculation:
Given, \(\vec{\text{a}}\), \(\vec{\text{b}}\) and \(\vec{\text{c}}\) be unit vectors lying on the same plane.
⇒ \(\vec{\text{a}}\), \(\vec{\text{b}}\) and \(\vec{\text{c}}\) are coplanar vectors.
that is \(\vec{\text{a}}.(\vec{\text{b}} \times \vec{\text{c}})= \vec{\text{b}}.(\vec{\text{c}} \times \vec{\text{a}})= \vec{\text{c}}.(\vec{\text{a}} \times \vec{\text{b}}) = 0\)
and |\(\vec{\text{a}}\)| = 1, |\(\vec{\text{b}}\)| = 1 and |\(\vec{\text{c}}\)| = 1
Now, \(\{(3\vec{\text{a}} + 2\vec{\text{b}}) × (5\vec{\text{a}} − 4\vec{\text{c}})\}⋅(\vec{\text{b}} + 2\vec{\text{c}})\)
Using distributive property,
\(\{(3\vec{\text{a}}× 5\vec{\text{a}} + 2\vec{\text{b}} × 5\vec{\text{a}} − 3\vec{\text{a}}×4\vec{\text{c}}- 2\vec{\text{b}}×4\vec{\text{c}})\}⋅(\vec{\text{b}} + 2\vec{\text{c}})\)
⇒ \(\{(15\vec{\text{a}}× \vec{\text{a}} + 10\vec{\text{b}} × \vec{\text{a}} − 12\vec{\text{a}}×\vec{\text{c}}- 8\vec{\text{b}}×\vec{\text{c}})\}⋅(\vec{\text{b}} + 2\vec{\text{c}})\)
⇒ \(\{(15(0) + 10(\vec{\text{b}} × \vec{\text{a}}) − 12(\vec{\text{a}}×\vec{\text{c}})- 8(\vec{\text{b}}×\vec{\text{c}})\}⋅(\vec{\text{b}} + 2\vec{\text{c}})\) (∵ \(\vec{\text{a}}\) × \(\vec{\text{a}}\) = 0)
⇒ \(\{ 10(\vec{\text{b}} × \vec{\text{a}}) − 12(\vec{\text{a}}×\vec{\text{c}})- 8(\vec{\text{b}}×\vec{\text{c}})\}⋅(\vec{\text{b}} + 2\vec{\text{c}})\)
Again using distributive property,
⇒ \(\{ 10(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{b}} − 12(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{b}}- 8(\vec{\text{b}}×\vec{\text{c}})⋅\vec{\text{b}}\} + \{ 20(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{c}} − 24(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{c}}- 16(\vec{\text{b}}×\vec{\text{c}})⋅\vec{\text{c}}\}\)
As, if any two vectors in scalar triple product are equal, then scalar triple product is 0.
⇒ \(\{ 10(0) − 12(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{b}}- 8(0)\} + \{ 20(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{c}} − 24(0)- 16(0)\}\)
⇒ \(20(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{c}}− 12(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{b}}\)
As, \(\vec{\text{a}}\), \(\vec{\text{b}}\) and \(\vec{\text{c}}\) are coplanar vectors.
⇒ 20(0) - 12(0) = 0
∴ The correct option is (4).
Magnitude and Directions of a Vector Question 5:
If the magnitude of vector \(\hat i + 5\hat j + \lambda \hat k\) is 6, then find the value of λ2.
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 5 Detailed Solution
Concept:
Magnitude of vector \(\rm \vec{z} = a\hat i + b\hat j + c\hat k\) then magnitude of vector is given by \( \left | \vec z \right |=\sqrt{(a^2+b^2 + c^2)}\)
Calculation:
Given: Let \(\vec z = \hat i + 5\hat j + \lambda \hat k\) and \( \left | \vec z \right |= 6\)
As we know that, if \(\rm \vec{z} = a\hat i + b\hat j + c\hat k\) then \( \left | \vec z \right |=\sqrt{(a^2+b^2 + c^2)}\)
⇒ \(\rm |\vec{z}| =\sqrt{(1^2+5^2 + λ^2)}\)
⇒ \(\rm 6 =\sqrt{1+25 + λ^2}\)
By squaring both the sides, we get
⇒ 36 = 26 + λ2
⇒ λ2 = 10
Hence, option 1 is correct.
Magnitude and Directions of a Vector Question 6:
If a and b are two vectors such that \(\mid a+ b\mid=\sqrt {29}\) and a × (3i + 2j + 4k) = (3i + 2j + 4k) × b, then the possible value of (a + b).(2i - 7j + 3k) is
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 6 Detailed Solution
Concept:
If vector v = ai + bj + ck, then magnitude of vector v is \( \sqrt {a^2+b^2+c^2}\).
Two vectors a and b are said to be parallel vectors if one is a scalar multiple of the other. i.e., a = λb, where 'λ' is a scalar.
Formulae
(a × b) = -(b × a)
Calculation:
We have,
a × (3i + 2j + 4k) = (3i + 2j + 4k) × b
⇒ a × (3i + 2j + 4k) - (3i + 2j + 4k) × b = 0
⇒ a × (3i + 2j + 4k) + b × (3i + 2j + 4k) = 0 [(a × b) = -(b × a)]
⇒ (a + b) × (3i + 2j + 4k) = 0
So, (a + b) and (3i + 2j + 4k) are parallel vectors.
⇒ (a + b) = λ(3i + 2j + 4k)
⇒ \(\mid a+ b\mid\) = \(\mid λ \sqrt {3^2+2^2+4^2}\mid\)
⇒ \(\mid λ \sqrt {9+4+16}\mid=\sqrt {29}\)
⇒ \(\mid λ \sqrt {29}\mid=\sqrt {29}\)
⇒ λ = ± 1
a + b = ± (3i + 2j + 4k)
Now,
(a + b).(2i - 7j + 3k) = ± (3i + 2j + 4k).(2i - 7j + 3k)
= ± (6 - 14 + 12)
= ± 4
∴ The possible value of (a + b).(2i - 7j + 3k) is 4.
Magnitude and Directions of a Vector Question 7:
Find the value of the given magnitude of the vector, \(\vec{a}=\frac{1}{{\sqrt 3}}\hat i + \frac{1}{{\sqrt 3}}\hat j + \frac{1}{{\sqrt 3}}\hat{k}\) ?
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 7 Detailed Solution
Given:
\(\vec{a}=\frac{1}{{√ 3}}̂ i + \frac{1}{{√ 3}}̂ j + \frac{1}{{√ 3}}̂{k}\)
Formula:
The magnitude of vector aî + bĵ + ck̂ is given by √(a2 + b2 +c2)
Calculation:
Magnitude of \(\vec{a}=\frac{1}{{√ 3}}̂ i + \frac{1}{{√ 3}}̂ j + \frac{1}{{√ 3}}̂{k}\)
= √[(1/√3)2 + (1/√3)2 + (1/√3)2]
= 1
Magnitude and Directions of a Vector Question 8:
The vector in the direction of the vector î − 2ĵ + 2k̂ that has magnitude 9 is
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 8 Detailed Solution
Concept:
The unit vector in the direction of a vector \(\vec{a}\) is given by \(\frac{\vec{a}}{|\vec a|}\).
Calculation:
Let \(\vec a =\) î − 2ĵ + 2k̂
The unit vector in the direction of a vector \(\vec{a}\) is given by \(\frac{\vec{a}}{|\vec a|}\).
= \(\frac{\rm\hat{i}-2\rm\hat{j}+2\rm\hat{k}}{\sqrt{1+2^2+2^2}}\)
= \(\frac{\rm\hat{i}-2\rm\hat{j}+2\rm\hat{k}}{3}\)
∴ Vector in the direction of the vector î − 2ĵ + 2k̂ that has magnitude 9 is
9 × \(\frac{\rm\hat{i}-2\rm\hat{j}+2\rm\hat{k}}{3}\)
= 3(î − 2ĵ + 2k̂)
The vector in the direction of the vector î − 2ĵ + 2k̂ that has magnitude 9 is 3(î − 2ĵ + 2k̂).
The correct answer is option 3.
Magnitude and Directions of a Vector Question 9:
Find the direction cosines of the vector î + 2ĵ - k̂.
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 9 Detailed Solution
Concept:
The direction cosines of the vector aî + bĵ + ck̂ are given by α = \(\rm \frac{a}{\sqrt{a^2+b^2+c^2}}\), β = \(\rm \frac{b}{\sqrt{a^2+b^2+c^2}}\) and γ = \(\rm \frac{c}{\sqrt{a^2+b^2+c^2}}\).
Calculation:
For the given vector î + 2ĵ - k̂, a = 1, b = 2 and = -1.
The direction cosines of the vector are:
α = \(\rm \frac{1}{\sqrt{1^2+2^2+(-1)^2}}\), β = \(\rm \frac{2}{\sqrt{1^2+2^2+(-1)^2}}\) and γ = \(\rm \frac{-1}{\sqrt{1^2+2^2+(-1)^2}}\)
⇒ α = \(\rm \frac{1}{\sqrt{6}}\), β = \(\rm \frac{2}{\sqrt{6}}\) and γ = \(\rm \frac{-1}{\sqrt{6}}\)
Magnitude and Directions of a Vector Question 10:
If \(\vec a = \;2\hat i + 2\hat j\ - 4\hat k \ and\;\vec b = 4\hat i + 2\hat j + 3 \hat k\) are two vectors then find the value of \(\left| {2\vec a - \;\vec b} \right|\) ?
Answer (Detailed Solution Below)
Magnitude and Directions of a Vector Question 10 Detailed Solution
CONCEPT:
If \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) is a vector then magnitude of \(\vec a\) is given by: \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)
CALCULATION:
Given: \(\vec a = \;2\hat i + 2\hat j\ - 4\hat k \ and\;\vec b = 4\hat i + 2\hat j + 3 \hat k\)
Here, we have to find the value of \(\left| {2\vec a - \;\vec b} \right|\)
⇒ \(2\vec a - \vec b = 2(\;2\hat i + 2\hat j\ - 4\hat k \ ) - ( 4\hat i + 2\hat j + 3 \hat k)\)
⇒ \(2\vec a - \vec b = 2\hat j - 11\hat k\)
As we know that, if \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) then magnitude of \(\vec a\) is given by: \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)
⇒ \(\left| 2{\vec a} - \vec b \right| = \sqrt {0^2 + 2^2 + (-11)^2} \; = 5\sqrt {5}\)
Hence, option A is the correct answer.