Relations and Functions MCQ Quiz in मल्याळम - Objective Question with Answer for Relations and Functions - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 9, 2025

നേടുക Relations and Functions ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Relations and Functions MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Relations and Functions MCQ Objective Questions

Top Relations and Functions MCQ Objective Questions

Relations and Functions Question 1:

If f(x + 1) = x2 - 3x + 2, then what is f(x) equal to?

  1. x2 - 5x + 4
  2. ​x2 - 5x + 6
  3. ​x2 + 3x + 3
  4. ​x2 - 3x + 1

Answer (Detailed Solution Below)

Option 2 : ​x2 - 5x + 6

Relations and Functions Question 1 Detailed Solution

Concept:

To get the value of any function at any point with respect to some other function, we need to manipulate the given function/ point in such a way that we get the function that is needed.

 

Calculation:

Given, f(x + 1) = x2 - 3x + 2

f(x + 1) = x2 - 2x - x + 2......[-3x = -2x - x]

f(x + 1) = x(x - 2) - 1(x - 2)

f(x + 1) = (x - 2)(x - 1)

f(x + 1) = (x + 1 - 3)(x + 1 - 2).......[-2 = 1 - 3 & -1 = 1 - 2]

Now replace (x + 1) terms with (x)

∴ f(x) = (x - 3)(x - 2)

f(x) = x2 -3x - 2x + 6

f(x) = x2 - 5x + 6

Additional Information

This problem can also be solved by putting (x - 1) in place of x.

Relations and Functions Question 2:

What is the value of \({\log _7}{\rm{\;}}{\log _7}\sqrt {7\sqrt {7\sqrt 7 } } \) equal to?

  1. 3 log2 7
  2. 1 – 3 log2 7
  3. 1 – 3 log7 2
  4. \(\frac{7}{8}\)

Answer (Detailed Solution Below)

Option 3 : 1 – 3 log7 2

Relations and Functions Question 2 Detailed Solution

Concept:

Logarithm properties

  1. Product rule: The log of a product equals the sum of two logs.

\({\log _a}\left( {mn} \right) = \;{\log _a}m + \;{\log _a}n\)

  1. Quotient rule: The log of a quotient equals the difference of two logs.

\({\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\)

  1. Power rule: In the log of a power the exponent becomes a coefficient.

\({\log _a}{m^n} = n{\log _a}m\)

  1. Change of base rule

\({\log _m}n = \frac{{{{\log }_a}n}}{{{{\log }_a}m}}\)

If m = n;
\({\log _m}m = \frac{{{{\log }_a}m}}{{{{\log }_a}m}} = 1\)

  1. \({\log _m}n = \frac{1}{{{{\log }_n}m}}\)

 

Calculation:

Here, we have to find the value of \({\log _7}{\rm{\;}}{\log _7}\sqrt {7\sqrt {7\sqrt 7 } } \)

\({\log _7}{\rm{\;}}{\log _7}\sqrt {7\sqrt {7\sqrt 7 } } \)

= log7 log7 (71/2 × 71/4 × 71/8)

= log7 log7 (7(1/2 + 1/4 + 1/8))

= log7 log7 (7(4 + 2 + 1)/8)

= log7 log7 (77/8)

From power rule;

= log7 (7/8) log77

= log7 (7/8) × 1 = log7 (7/8) = log7 7 – log7 8

= 1 – log7 8 = 1 – log7 23

= 1 – 3 log7 2

Relations and Functions Question 3:

What is the nature of relation R, if R is defined as R = {(x, y) : 2x + y = 41, x, y ∈ N}? 

  1. reflexive 
  2. symmetric 
  3. transitive
  4. None of these

Answer (Detailed Solution Below)

Option 4 : None of these

Relations and Functions Question 3 Detailed Solution

Concept:

Reflexive Set:

A set, A is Reflexive when for any ∈ R

⇒ (x , x) ∈ R.

Symmetric Set:

A set, A is Symmetric when for any x, y ∈ 

(x, y) ∈ R ⇒ (y, x) ∈ R.

Transitive Set:

A set, A is Transitive when for any x, y, z ∈ R 

(x, y) ∈ R and (y, z) ∈ R  ⇒ (x, z) ∈ R.

Explanation:

Let us check all the conditions:

Reflexivity:

Let x be an arbitrary element of R. For Reflexive, let y + x

i.e. for any x ∈ R

⇒ 2x + x = 41

⇒ x = \(\frac{41}{3}\) ∉ N

⇒(x, x)  R

Thus, it is NOT reflexive.

Symmetry:

Let (x, y) ∈ R. Then,

2x + y = 41 Which is not equal to 2y + x = 41

i.e. (y , x)  R

So, R is NOT symmetric.

Transitivity:

Let (x, y) and (y, z)  R

⇒ 2x + y = 41 and 2y + z = 41

which is not equal to 2x + z = 41

i.e. (x , z) ∉ R

Thus, R is NOT transitive.

Relations and Functions Question 4:

If 2log(x+3) = log81 then the value of x.

  1. 6
  2. 5
  3. 7
  4. 8

Answer (Detailed Solution Below)

Option 1 : 6

Relations and Functions Question 4 Detailed Solution

Given:

⇒ 2log(x+3) = log81

Concept used:

a log(b) = log(b)a

Calculation:

Here,

⇒ 2log(x+3) = log81

⇒ log(x + 3)2 = log81

⇒ (x + 3)2 = 81

⇒ (x + 3) = \({ \sqrt{81}}\)

x + 3 = 9 

x = 9 - 3 = 6

∴ x = 6

Relations and Functions Question 5:

If f(x) = 4x + 3, then what is f o f o f(-1) equal to?

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 1 : -1

Relations and Functions Question 5 Detailed Solution

Concept:

For any two functions f and g, f o g is defined as f[g(x)].

Calculation:

Given that,

f(x) = 4x + 3   

Using the above concept

⇒ fof(x) = 4(4x + 3) + 3

⇒ fof(x) = 16x + 15 

Again using the same concept

⇒ fofof(x) = 16(4x + 3) + 15

fofof(x) = 64x + 63

Put x = -1 in the above function

⇒ fofof(-1) = 64(-1) + 63 = -1

∴  f o f o f(-1) equal to -1.

Relations and Functions Question 6:

If \(\rm \log_{4}{(x^{2} - 1)} - \log_{4} (x + 1) = 1\) then x is equal to ?

  1. 1
  2. 2
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Relations and Functions Question 6 Detailed Solution

Concept:

Logarithm properties:  

Product rule: The log of a product equals the sum of two logs.

\(\rm {\log _a}\left( {mn} \right) = \;{\log _a}m + \;{\log _a}n\)

Quotient rule: The log of a quotient equals the difference of two logs.

\(\rm {\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\)

Power rule: In the log of power the exponent becomes a coefficient.

\(\rm {\log _a}{m^n} = n{\log _a}m\)

 

Formula of Logarithms:

If \(\rm lo{g_a}x = b \) then x = ab (Here a ≠ 1 and a > 0)

 

Calculation:

Given: \(\rm \log_{4}{(x^{2} - 1)} - \log_{4} (x + 1) = 1\)

\(\rm ⇒ \log_{4} \left[{\frac{(x^{2} - 1)}{(x + 1)}} \right ] = 1\)        (∵ \(\rm {\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\))

\(\rm ⇒ \log_{4} \left[{\frac{(x - 1)(x+1)}{(x + 1)}} \right ] = 1\)

\(\rm ⇒ \log_{4} (x -1) = 1\)

⇒ (x - 1) = 4

∴ x = 5

Relations and Functions Question 7:

f (x + 1/x) = x2 + 1/x2 then f(x) can be

  1. x2 + 1
  2. 2 - x2
  3. x2 - 2
  4. 4 x2 - 2

Answer (Detailed Solution Below)

Option 3 : x2 - 2

Relations and Functions Question 7 Detailed Solution

Calculation:

Given:

f (x + 1/x) = x2 + 1/x2

⇒ f (x + 1/x) = x2 + 1/x2 + 2 - 2

⇒ f (x + 1/x) = (x + 1/x)2 - 2

Substituting x in place of x + 1/x, we get

∴ f (x) = x2 - 2

Relations and Functions Question 8:

If f = {(1, 2)} and g = {(2, 3)} then gof(1) is ?

  1. 2
  2. 3
  3. 4
  4. 1

Answer (Detailed Solution Below)

Option 2 : 3

Relations and Functions Question 8 Detailed Solution

Given :

If f = {(1, 2)} and g = {(2, 3)} 

Concept used:

Mapping Diagram consists of two columns in which one denotes the domain of a function f whereas the other column denotes the Range.

Example:  f = {(2, -5), (3, 4)} means 2 maps to -5 and 3 maps to 4 

F2 Madhuri Teaching 20.08.2022 D1

Calculations:

gof(1) 

⇒ g(2) because f(1) = 2

⇒ g(2) = 3

∴ gof(1) = 3 

∴ option 2 is correct.

Relations and Functions Question 9:

\(f(x) = x + \sqrt{x^2}\) is a function from R → R. Then f(x) is____

  1. injective
  2. surjective
  3. bijective
  4. none of these

Answer (Detailed Solution Below)

Option 4 : none of these

Relations and Functions Question 9 Detailed Solution

Concept:

One-One Function / Injective Function:

A function f: A → B is said to be a one-one function if different elements in A have different images or are associated with different elements in B.

i.e., if f(x1) = f(x2) then x1 = x2, ∀ x1, x2 ∈ R

Onto Function / Surjective Function:

A function f: A → B is said to be an onto function if each element in B has at least one pre-image in A.

i.e., If-Range of function f = Codomain of function f, then f is onto.

Bijective Function:

A function f: A → B is said to be a B a bijective function if it is both one-one and onto function.

Calculation:

Given: \(f(x) = x + \sqrt{x^2}\)

The given function can also be written as,

f(x) = x + |x|

This function can be converted into a piecewise-defined function.

For, x > 0

⇒ f(x) = x + (+ x) = 2x

For, x < 0

⇒ f(x) = x + (- x) = 0

Clearly, f(x) ≥ 0 for all x. So, it is not surjective or onto as,

Range of function f ≠  Codomain of function f.

Also, f(x) = x + |x|. Clearly, f(-1) = f(-2) = 0

This means for one tow values of x, we get the same value of y as 0  so, f is not one or we can say that it is many -one

Relations and Functions Question 10:

What is the domain of the function \(f(x) =\sqrt{1 - (x-1)^2} \ ?\)

  1. (0, 1)
  2. [-1, 1]
  3. (0, 2)
  4. [0, 2]

Answer (Detailed Solution Below)

Option 4 : [0, 2]

Relations and Functions Question 10 Detailed Solution

Concept:

A function y = √f(x)  is define for f(x) > 0.

If (x - a)(x - b) ≤ 0 ⇒ x ∈ [a, b]

Calculation:

Given  that, \(f(x) =\sqrt{1 - (x-1)^2} \ \)

For a function to be defined,

1 - (x - 1)2 ≥ 0

⇒ (x - 1)2 - 1 ≤ 0

Since, (a - b)2 = a2 - 2ab + b2

 x2 + 1  - 2x - 1 ≤ 0

⇒ x2 - 2x ≤ 0

⇒ x(x - 2) ≤ 0

∴ x ∈ [0, 2]

Get Free Access Now
Hot Links: teen patti master apk download teen patti gold download apk teen patti win