Solution of Linear Equations MCQ Quiz in मल्याळम - Objective Question with Answer for Solution of Linear Equations - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 17, 2025

നേടുക Solution of Linear Equations ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Solution of Linear Equations MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Solution of Linear Equations MCQ Objective Questions

Top Solution of Linear Equations MCQ Objective Questions

Solution of Linear Equations Question 1:

The system of linear equations x + 2y + 2z = 1,2x + 2y + 3z = 3, x - y + 3z = 5 is:

  1. inconsistent
  2. consistent with a unique solution
  3. may or may not be consistent
  4. consistent with an infinite solution

Answer (Detailed Solution Below)

Option 2 : consistent with a unique solution

Solution of Linear Equations Question 1 Detailed Solution

Concept

Let the system of equations be,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

\(\Rightarrow \left[ {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} {{d_1}}\\ {{d_2}}\\ {{d_3}} \end{array}} \right]\)⇒ AX = B

⇒ X = A - 1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}\;B\)

  • If det (A) ≠ 0, the system is consistent having unique solution.
  • If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.
  • If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)

 

If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right]\) then determinant of A is given by:

|A| = a11 × {(a22 × a33) - (a23 × a32)} - a12 × {(a21 × a33) - (a23 × a31)} + a13 × {(a21 × a32) - (a22 × a31)}

Calculation:

Given: The system of equations

x + 2y + 2z = 1

2x + 2y + 3z = 3 and

x - y + 3z = 5

So, A = \(\left[ {\begin{array}{*{20}{c}} 1&2& 2\\ 2&2&3\\ 1&{ - 1}&3 \end{array}} \right]\)

det (A) = |A| = 1 × {( 2 × 3) - ( 3 × -1)} - 2 × {(2 × 3) - (3  × 1)} + 2 × {(2 × - 1) - (2 × 1)}

⇒ |A| = 1(6 + 3) -2(6 - 3) + 2(-2 - 2)

⇒ |A| = 9 - 6 - 8 = -5 

∴ |A| ≠ 0

∴ The system of linear is consistent with a unique solution

Solution of Linear Equations Question 2:

An ordered pair (α, β) for which the system of linear equations 

(1 + α)x + βy + z = 2

αx + (1 + β)y + z = 3

αx + βy + 2z = 2 has a unique solution is 

  1. (1, -3)
  2. (-3, 1)
  3. (2, 4)
  4. (-4, 2)

Answer (Detailed Solution Below)

Option 3 : (2, 4)

Solution of Linear Equations Question 2 Detailed Solution

CONCEPT:

  • Since the constant terms for the given equations are non-zero so the values Δ­1, Δ2, and Δ3 may be zero or may not be 0.
  • For the unique solution, the value of the determinant of coefficients that means Δ should be non zero.

Δ  ≠  0

Where Δ is the determinant formed by the coefficient of the given homogeneous equation, 

CALCULATION

Given:

(1 + α)x + βy + z = 0 

αx + (1 + β)y + z = 0

αx + βy + 2z = 0

\(Δ =\left| {\begin{array}{*{20}{c}} {1 + α }&β &1\\ α &{1 + α }&1\\ α &β &2 \end{array}} \right|\)

⇒ Δ  = (α + β + 2)\(\left| {\begin{array}{*{20}{c}} 1&β &1\\ 1&{1 + α }&1\\ 1&β &2 \end{array}} \right|\) [C1 → C1 + C2 + C3]

⇒ Δ = (α + β + 2)\(\left| {\begin{array}{*{20}{c}} 1&β &1\\ 0&1&0\\ 0&0&1 \end{array}} \right|\) [R2 → R2 - Rand R3 → R- R1]

⇒ Δ = (α + β + 2)

  • For unique solution,

⇒ α + β + 2 ≠ 0 

⇒ α + β ≠ -2.

  • This condition is satisfied only for the interval (2, 4)
  • So, the correct answer is option 3.                                 

Solution of Linear Equations Question 3:

If 3x + 2y + z = 0, x + 4y + z = 0, 2x + y + 4z = 0 is a system of equations, then:

  1. it can be reduced to a single equation and therefore a solution does not exist.
  2. it has only the trivial solution x = 0, y = 0, z = 0.
  3. the determinant of the matrix coefficient is zero.
  4. it is inconsistent.

Answer (Detailed Solution Below)

Option 2 : it has only the trivial solution x = 0, y = 0, z = 0.

Solution of Linear Equations Question 3 Detailed Solution

Concept:

Consider the system of equations,

a1x + b1y + c1z = 0, 

a2x + b2y + c2z = 0

a3x + b3y + c3z = 0 which is linear homogeneous equations.

Every homogeneous system has either trivial solution or non trivial solution.

If Rank of Matrix = Total number of unknowns, the system possess trivial solution and 

If Rank of Matrix < Total number of unknowns, the system possess non trivial solution

 

Calculations:

Given,  system of equations 

3x + 2y + z = 0,

x + 4y + z = 0,

2x + y + 4z = 0 which is linear homogeneous equations.

In matrix form , we can write

\(\begin{bmatrix} 3 &2 &1 \\ 1&4 &1 \\ 2 &1 & 4 \end{bmatrix}\)\(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\) = \(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\)

AX = B 

Where A = \(\begin{bmatrix} 3 &2 &1 \\ 1&4 &1 \\ 2 &1 & 4 \end{bmatrix}\), X = \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\)and B = \(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\)

Every homogeneous system has either trivial solution or non trivial solution.

If Rank of Matrix = Total number of unknowns, the system possess trivial solution and 

If Rank of Matrix < Total number of unknowns, the system possess non trivial solution

Here, Rank of Matrix = 3

Total number of unknowns = 3

i.e. Rank of Matrix = Total number of unknowns 

System has trivial solution.

i.e  x = 0, y = 0, z = 0

If 3x + 2y + z = 0, x + 4y + z = 0, 2x + y + 4z = 0 is a system of equations, then: it has only the trivial solution x = 0, y = 0, z = 0.

Solution of Linear Equations Question 4:

The system of equations

2x + y - 3z = 5

3x - 2y + 2z = 5 and

5x - 3y - z = 16

  1. is inconsistent 
  2. is consistent, with a unique solution 
  3. is consistent, with infinitely many solutions
  4. has its solution lying along x - axis in three - dimensional space

Answer (Detailed Solution Below)

Option 2 : is consistent, with a unique solution 

Solution of Linear Equations Question 4 Detailed Solution

Concept

Let the system of equations be,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

\(\Rightarrow \left[ {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} {{d_1}}\\ {{d_2}}\\ {{d_3}} \end{array}} \right]\)⇒ AX = B

⇒ X = A - 1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}\;B\)

⇒ If det (A) ≠ 0, system is consistent having unique solution.

⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.

⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)

If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right]\) then determinant of A is given by:

|A| = a11 × {(a22 × a33) - (a23 × a32)} - a12 × {(a21 × a33) - (a23 × a31)} + a13 × {(a21 × a32) - (a22 × a31)}

Calculation:

Given: The system of equations

2x + y - 3z = 5

3x - 2y + 2z = 5 and

5x - 3y - z = 16

So, A = \(\left[ {\begin{array}{*{20}{c}} 2&1&{ - 3}\\ 3&{ - 2}&2\\ 5&{ - 3}&{ - 1} \end{array}} \right]\)

det (A) = |A| = 2 × {( - 2 × - 1) - ( - 3 × 2)} - 1 × {(3 × - 1) - (2 × 5)} + ( - 3) × {(3 × - 3) - (5 × - 2)}

⇒ |A| = 2 × (2 + 6) - 1 × ( - 3 - 10) - 3 × ( - 9 + 10)

⇒ |A| = 16 + 13 - 3 = 26

∴ |A| ≠ 0

So, system is consistent having unique solution.

Solution of Linear Equations Question 5:

The system of equations

αx + y + z = α - 1

x + αy + z = α -1

x + y + αz = α -1

has no solution, if α is 

  1. Not -2
  2. 1
  3. -2
  4. Either - 2 or 1

Answer (Detailed Solution Below)

Option 3 : -2

Solution of Linear Equations Question 5 Detailed Solution

Concept

Let the system of equations be,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

\({\rm{\;}} ⇒ \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_1}}&{{{\rm{b}}_1}}&{{{\rm{c}}_1}}\\ {{{\rm{a}}_2}}&{{{\rm{b}}_2}}&{{{\rm{c}}_2}}\\ {{{\rm{a}}_3}}&{{{\rm{b}}_3}}&{{{\rm{c}}_3}} \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {{{\rm{d}}_1}}\\ {{{\rm{d}}_2}}\\ {{{\rm{d}}_3}} \end{array}} \right]\)

⇒ AX = B

⇒ X = A-1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}{\rm{\;B}}\)

⇒ If det (A) ≠ 0, system is consistent has unique solution.

⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.

⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)

Calculation:

Given

For no solution or infinitely many solutions

\(⇒ \left| {\begin{array}{*{20}{c}} α &1&1\\ 1&α &1\\ 1&1&α \end{array}} \right|\) = 0 

⇒ α = 1, α = -2

But for α = 1, clearly, there are infinitely many solutions as column matrix B will become zero matrices.

⇒ (adj A). B = O

For no solution,

When we put α = - 2 then matrix B will become a non zero column matrix with the same entries as -3 

⇒  (adj A). B ≠ O

So, α = - 2 for no solution.

Solution of Linear Equations Question 6:

A system of Linear equations represented in matrix form AX = O, A is m x m matrix, has a non-zero solution if the determinant of A (i.e., det (A)) is

  1. 1
  2. -1
  3. 0
  4. 2

Answer (Detailed Solution Below)

Option 3 : 0

Solution of Linear Equations Question 6 Detailed Solution

Explanation:

For a matrix system AX = B of linear equations -

  • It has a unique solution X = A-1B if A is a non-singular matrix or det(A) ≠ 0.
  • If det(A) = 0 and adj(A)B = 0, then there are infinite many solutions.
  • If det(A) = 0 and adj(A)B ≠ 0, then there are no solutions.

Also if B = 0, then the system is homogeneous.

  • This homogeneous system has only trivial solution (x = y = z = 0) if the det(A) ≠ 0
  • Otherwise, for det(A) = 0; this system is consistent with infinite many solutions.

Solution of Linear Equations Question 7:

If the system of equation x + 2y - 3z = 2, (k + 3) z = 3, (2k + 1) y + z = 2 is consistent, then K is

  1. -3 and \( - \frac{1}{2}\)
  2. \( - \frac{1}{2}\)
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 1 : -3 and \( - \frac{1}{2}\)

Solution of Linear Equations Question 7 Detailed Solution

Given:

x + 2y - 3z = 2

(k + 3)z = 3

(2k + 1)y + z = 2

Concept:

The given set of equations is consistent

Therefore \(\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}\)

Calculation:

\(\dfrac{0}{2k+1} = \dfrac{k+3}{1}\)

⇒ \(0 = 2k^2 + 6k + k + 3\)

⇒ \(0 = 2k^2 + 7k + 3\)

⇒ \(2k^2 + 7k + 3 = 0\)

\(\Delta = b^2 - 4ac\)

49 - (4 × 2 × 3)

49 - 24

⇒ 25 > 0

\(=\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \dfrac{-7 \pm \sqrt{25}}{2 \times 2}\)

⇒ \(=\dfrac{-7 \pm 5}{4} = \dfrac{-7-5}{4} , \dfrac{-7+5}{4}\)

⇒ \(=\dfrac{-12}{4}, \dfrac{-2}{4}\)

∴ K = -3, -1/2

Solution of Linear Equations Question 8:

The real value of k for which the system of equations 2kx - 2y + 3z = 0, x + ky + 2z = 0, 2x + kz = 0, has non trivial solution is

  1. 2
  2. -2
  3. 3
  4. -3

Answer (Detailed Solution Below)

Option 1 : 2

Solution of Linear Equations Question 8 Detailed Solution

Concept

Let the system of equations be,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

\({\rm{\;}} ⇒ \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_1}}&{{{\rm{b}}_1}}&{{{\rm{c}}_1}}\\ {{{\rm{a}}_2}}&{{{\rm{b}}_2}}&{{{\rm{c}}_2}}\\ {{{\rm{a}}_3}}&{{{\rm{b}}_3}}&{{{\rm{c}}_3}} \end{array}} \right]{\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {{{\rm{d}}_1}}\\ {{{\rm{d}}_2}}\\ {{{\rm{d}}_3}} \end{array}} \right]\)

⇒ AX = B

⇒ X = A-1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}{\rm{\;B}}\)

⇒ If det (A) ≠ 0, system is consistent having unique solution.

⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.

⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)

Calculation:

Given: 2kx - 2y + 3z = 0, x + ky + 2z = 0, 2x + kz = 0

For the homogeneous system of equations,

⇒ (adj A). B = 0 for all value of k and the column matrix B is zero matrix.

So, for non trivial solution,

|A|  = 0 

⇒ 2k(k2) + 2(k - 4) + 3(-2k) = 0

⇒ k3 - 2k - 4 =0 

⇒  (k - 2)(k2 + 2k + 2) = 0 

∴ k = 2 (Real value).

Solution of Linear Equations Question 9:

The values of m, n, for which the system of equations 

x + y + z = 4,

2x + 5y + 5z = 17,

x + 2y + mz = n

has infinitely many solutions, satisfy the equation : 

  1. m2 + n2 – m – n = 46 
  2. m2 + n2 + m + n = 64 
  3. m2 + n2 + mn = 68 
  4. m2 + n2 – mn = 39 

Answer (Detailed Solution Below)

Option 4 : m2 + n2 – mn = 39 

Solution of Linear Equations Question 9 Detailed Solution

Calculation:

Given, x + y + z = 4,

2x + 5y + 5z = 17,

x + 2y + mz = n

∴ D = \(\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 5 & 5 \\ 1 & 2 & \mathrm{~m} \end{array}\right|\) = 0 

⇒ 1(5m - 10) - 1(2m - 5) + 1(4 - 5) = 2 

⇒ m = 2

Also, Dz\(\left|\begin{array}{ccc} 1 & 1 & 4 \\ 2 & 5 & 17 \\ 1 & 2 & n \end{array}\right|\) = 

⇒ 1(5n - 34) - 1(2n - 17) + 4(4 - 5) = 0

 n = 7

∴ m2 + n2 – mn = 22 + 42 – 14 = 4 + 49 – 14 = 39

∴ m and n satisfy the equation m2 + n2 – mn = 39.

The correct answer is Option 4.

Solution of Linear Equations Question 10:

The value of a for which the system of equations a3x + (a + 1)3y + (a + 2)3z = 0, ax + (a + 1)y + (a + 2)z = 0, x + y + z = 0, has a nonzero solution is

  1. 0
  2. 2
  3. -1
  4. 1

Answer (Detailed Solution Below)

Option 3 : -1

Solution of Linear Equations Question 10 Detailed Solution

Concept:

If the system of equations has non-zero solutions, then the determinant is zero. 

Calculation:

The system will have a non-zero solution, if

Δ = \( \begin{vmatrix} a^3 & (a+1)^3 & (a+2)^3 \\[0.3em] a & a+1 & a+2 \\[0.3em] 1 & 1 & 1 \end{vmatrix}=0\)

C2 → C- C1

C3 → C3 - C1

 Δ = \( \begin{vmatrix} a^3 & 3a^2+3a+1 & 6a^2+12a+8 \\[0.3em] a & 1 & 2 \\[0.3em] 1 & 0 & 0 \end{vmatrix}=0\)

[(a + 1)3 - a3 = a3 + 1 + 3(a + 1) - a3 = 3a2 + 3a + 1 and

(a + 2)3 - a3 = a3 + 8 + 3(a + 2) - a3 = 6a2 + 12a + 8]

Expanding along R3,

 (6a2 + 6a + 2) - (6a2 + 12a + 8) = 0

 -6a - 6 = 0

 a = -1

∴ The value of a is -1.

Get Free Access Now
Hot Links: teen patti yes dhani teen patti teen patti circle teen patti casino apk teen patti gold apk download