Applications of Vectors MCQ Quiz in தமிழ் - Objective Question with Answer for Applications of Vectors - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Mar 14, 2025
Latest Applications of Vectors MCQ Objective Questions
Top Applications of Vectors MCQ Objective Questions
Applications of Vectors Question 1:
The magnitude of the moment of the force \(\vec F = \left( {\hat i + \hat j + \hat k} \right)\) about the point \(\left( {\hat i + 3\hat j + 4\hat k} \right)\) acting through the point \(\left( {\hat -4i + 4\hat j + 1\hat k} \right)\) is
Answer (Detailed Solution Below)
Applications of Vectors Question 1 Detailed Solution
Let P(1, 3, 4) and A(-4, 4, 1) be the given points
Then, \(\overrightarrow {PA} = \left( { - 4,{\rm{\;}}4,{\rm{\;}}1} \right) - \left( {1,{\rm{\;}}3,{\rm{\;}}4} \right){\rm{\;}}\)
\(\begin{array}{l} = \left( { - 5,1, - 3} \right) = \; - 5\hat i + \hat j - 3\hat k\\ \overrightarrow {PA} \times \hat F = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ { - 5}&1&{ - 3}\\ 1&1&1 \end{array}} \right| = \left( {4\hat i + 2\hat j - 6\hat k} \right) \end{array}\)
\(\left| {\overrightarrow {PA} }\times \hat F \right | = \sqrt {{4^2} + {2^2} + {{\left( { - 6} \right)}^2}} = \sqrt {16 + 4 + 36} = \sqrt {56} \)Applications of Vectors Question 2:
The adjacent sides of AB and AC of a triangle ABC are represented by the vectors -2i + 3j + 2k and -4i + 5j + 2k respectively. The area of the triangle ABC is
Answer (Detailed Solution Below)
Applications of Vectors Question 2 Detailed Solution
Concept:
Magnitude of a vector:
Magnitude of a vector \(\bar a = ai+bj+ck\) is given by \(|\bar a| = \sqrt{a^2+b^2+c^2}\).
Area of triangle:
If the vectors \(\bar a\mbox{ and } \bar b\) form adjacent sides of the triangle then the area of the triangle is given by: \(A = \dfrac{1}{2}|\bar a\times \bar b|\)
Cross product of the vectors:
For two vectors \(\bar a = ai+bj+ck\) and \(\bar b = di+ej+fk\) the cross product is given by: \(\bar a\times \bar b = \begin{vmatrix} i & j & k\\ a & b & c\\ d & e & f \end{vmatrix}\)
Calculation:
Let the vectors be \(\bar a = -2i+3j+2k\) and \(\bar b = -4i+5j+2k\).
First we will calculate the cross product as follow:
\(\begin{align*} \bar a\times \bar b &= \begin{vmatrix} i & j & k\\ -2 & 3 & 2\\ -4 & 5 & 2 \end{vmatrix}\\ &= i(6-10) - j(-4+8) + k(-10+12)\\ &= -4i-4j+2k \end{align*}\)
Therefore, the magnitude of the cross product is:
\(\begin{align*} |\bar a\times \bar b| &= \sqrt{16+16+4}\\ &= 6 \end{align*}\)
Using the formula for the area of the triangle, the area is given by:
\(\begin{align*} A &= \dfrac{1}{2}|\bar a\times \bar b|\\ &= \dfrac{1}{2}\times 6\\ &= 3 \end{align*}\)
Thus, the area of the triangle is 3 square units.
Applications of Vectors Question 3:
Two adjacent sides of a parallelogram are 2î - 4ĵ + 5k̂ and î - 2ĵ - 3k̂. What is the magnitude of dot product of vectors which represent its diagonals?
Answer (Detailed Solution Below)
Applications of Vectors Question 3 Detailed Solution
Concept:
Triangle Law of Vector Addition: Triangle law of vector addition states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.
⇒\(\rm\vec R=\vec a+\vec b\)
Parallelogram law of vector addition:
If two vectors are acting simultaneously at a point, then it can be represented both in magnitude and direction by the adjacent sides drawn from a point. Therefore, the resultant vector is completely represented both in direction and magnitude by the diagonal of the parallelogram passing through the point
\(\rm\vec c=\vec a+\vec b\)
Calculation:
Here, vector a and b are adjacent sides of parallelogram
a = 2î - 4ĵ + 5k̂ and b = î - 2ĵ - 3k̂.
Let vector c and d are digonals of parallelogram
Using parallelogram law,
\(\rm\vec c=\vec a+\vec b\)
= (2î - 4ĵ + 5k̂) + (î - 2ĵ - 3k̂)
=.\(\rm 3\hat i-6\hat j+2\hat k\)
Now using triangle law,
\(\rm \vec b+\vec d = \vec a\\ \Rightarrow \vec d=\vec a-\vec b\)
= (2î - 4ĵ + 5k̂) - (î - 2ĵ - 3k̂)
= \(\rm \hat i-2\hat j+8\hat k\)
\(\rm \vec c. \vec d=(\rm 3\hat i-6\hat j+2\hat k).(\rm \rm \hat i-2\hat j+8\hat k)\\ =3+12+16\\ =31\)
Hence, option (3) is correct.
Applications of Vectors Question 4:
The vectors \(\overrightarrow {AB} = 3 \hat i + 4 \hat k\) and \(\overrightarrow {AC} = 5\hat i - 2\hat j + 4\hat k\) are the sides of a triangle ABC. The length of the median through A is,
Answer (Detailed Solution Below)
Applications of Vectors Question 4 Detailed Solution
Concept:
Referring to the diagram,
From the law of addition of vectors,
\(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \,\) and \(\overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AD} \,\)
Calculation:
\(2\overrightarrow {AD} = \overrightarrow {AB} + \overrightarrow {BD} \,\, + \overrightarrow {AC} + \overrightarrow {CD} \)
\(\overrightarrow {AD} \, = \frac{{\overrightarrow {AB} + \overrightarrow {AC} }}{2}\,\,[\overrightarrow {BD} = - \overrightarrow {CD} ]\)
\(\overrightarrow {AD} = \frac{{(3 + 5)i + (0 - 2)j + (4 + 4)k}}{2} = 4i - j + 4k\)
\(\overrightarrow {|AD|} = \sqrt {16 + 16 + 1} = \sqrt {33.} \)
Applications of Vectors Question 5:
Constant forces \(\rm \vec P\) = 2î - 5ĵ + 6k̂ and \(\rm \vec Q\) = -î + 2ĵ - k̂ act on a particle. The work done when the particle is displaced from A whose position vector is 4î - 3ĵ - 2k̂, to B whose position vector is 6î + ĵ - 3k̂, is:
Answer (Detailed Solution Below)
Applications of Vectors Question 5 Detailed Solution
Concept:
If two points A and B have position vectors \(\rm \vec A\) and \(\rm \vec B\) respectively, then the vector \(\rm \vec {AB}=\vec B-\vec A\).
For two vectors \(\rm \vec A\) and \(\rm \vec B\) at an angle θ to each other:
- Dot Product is defined as: \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).
- Resultant Vector is equal \(\rm \vec A + \vec B\).
- Work: The work (W) done by a force (\(\rm \vec F\)) in moving (displacing) an object along a vector \(\rm \vec D\) is given by: W = \(\rm \vec F.\vec D=|\vec F||\vec D|\cos \theta\).
Calculation:
Let's say that the forces acting on the particle are \(\rm \vec P\) = 2î - 5ĵ + 6k̂ and \(\rm \vec Q\) = -î + 2ĵ - k̂.
∴ The resulting force acting on the particle will be \(\rm \vec F=\vec P+\vec Q\).
⇒ \(\rm \vec F\) = (2î - 5ĵ + 6k̂) + (-î + 2ĵ - k̂)
⇒ \(\rm \vec F\) = î - 3ĵ + 5k̂.
Since the particle is moved from the point 4î - 3ĵ - 2k̂ to the point 6î + ĵ - 3k̂, the displacement vector \(\rm \vec D\) will be:
\(\rm \vec D=\vec{AB}=\vec B-\vec A\)
= (6î + ĵ - 3k̂) - (4î - 3ĵ - 2k̂)
⇒ \(\rm \vec D\) = 2î + 4ĵ - k̂.
And finally, the work done W will be:
W = \(\rm \vec F.\vec D\) = (î - 3ĵ + 5k̂).(2î + 4ĵ - k̂)
⇒ W = (1)(2) + (-3)(4) + (5)(-1)
⇒ W = 2 - 12 - 5 =
∴ -15 units.
Applications of Vectors Question 6:
What is the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) ?
Answer (Detailed Solution Below)
Applications of Vectors Question 6 Detailed Solution
Concept:
Let A, B , and C be the vertices of the \(\triangle ABC\) , then the area of that triangle = \(\rm \dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)
Calculations:
Given, triangle whose vertices are at A = (3, -1, 2) = \(\rm 3\vec i -\vec j + 2\vec k\)
B = (1, -1, -3) = \(\rm \vec i -\vec j - 3\vec k\)
and C = (4, -3, 1) = \(\rm 4\vec i -3\vec j + \vec k\)
Let A, B , and C be the vertices of the \(\triangle ABC\) , then the area of that triangle = \(\rm \dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)
\(\rm \vec {AB} = \rm (\vec i -\vec j - 3\vec k) - (3\vec i -\vec j + 2\vec k)\)
⇒\(\rm \vec {AB}= -2\vec i + 0\vec k -5 \vec k\)
\(\rm \vec {AC} = \rm (4\vec i -3\vec j + \vec k) - (3\vec i -\vec j + 2\vec k)\)
⇒ \(\rm \vec {AC} = \vec i -2\vec j -\vec k\)
Now, \(\rm \vec {AB}\times\vec {AC}= \)\(\begin{vmatrix} \vec i&\vec j & \vec k \\ -2& 0 & -5 \\ 1 & -2 & -1 \end{vmatrix}\)
⇒\(\rm \vec {AB} \times \vec {AC} = \vec i (-10)-\vec j(2+5)+\vec k(4-0)\)
⇒\(\rm \vec {AB} \times \vec {AC} = -10\vec i -7\vec j+4\vec k\)
⇒ \(\rm |\vec {AB} \times \vec {AC}| = \sqrt {(-10)^2+(-7)^2+(4)^2 }\)
⇒\(\rm |\vec {AB} \times \vec {AC}| = \sqrt {165}\)
The area of that triangle = \(\dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)
⇒ The area of that triangle = \(\dfrac 12 \times \sqrt {165}\)
Hence, the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) is \(\dfrac {\sqrt {165}}{2}\)
Applications of Vectors Question 7:
Assume that a particle is displaced from point A = (2, - 6, 1) to the point B = (5, 9, 7) under the influence of force \(\vec F = \;2\hat i + \hat j + \hat k\). Find the work done in displacing the particle from point A to B.
Answer (Detailed Solution Below)
Applications of Vectors Question 7 Detailed Solution
Concept:
I. If a particle is displace from point A to B under the influence of force \(\vec F\). Then the work done in displacing the particle from point A to B is given by: \(W = \;\vec F \cdot \vec d\)
II. If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \cdot \;\vec b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
Calculation:
Given: Particle is displace from point A = (2, - 6, 1) to the point B = (5, 9, 7) under the influence of force \(\vec F = \;2\hat i + \hat j + \hat k\)
So, the displacement of particle is given by:
\(\vec d = \;\overrightarrow {AB} = \left( {5\hat i + 9\hat j + 7\hat k} \right) - \left( {2\hat i - 6\hat j + \hat k} \right) = \;3\hat i + 15\hat j + 6\hat k\)
As we know that, If a particle is displace from point A to B under the influence of force \(\vec F\). Then the work done in displacing the particle from point A to B is given by: \(W = \;\vec F \cdot \vec d\)
\(W = \;\vec F \cdot \vec d = \left( {2\hat i + \hat j + \hat k} \right) \cdot \left( {3\hat i + 15\hat j + 6\hat k} \right) = 6 + 15 + 6 = 27\;units\)
Applications of Vectors Question 8:
Let A(2, 3 ,5) and C(-3, 4,-2) be opposite vertices of a parallelogram ABCD if the diagonal \(\overrightarrow{B D}=\hat{i}+2 \hat{j}+3 \hat{k}\) then the area of the parallelogram is equal to
Answer (Detailed Solution Below)
Applications of Vectors Question 8 Detailed Solution
Calculation
\(\overrightarrow{A C}=5\hat{i}-1 \hat{j}+7\hat{k}\)
\(\overrightarrow{B D}=\hat{i}+2 \hat{j}+3 \hat{k}\)
Area = |AC × BD|
⇒ \(\left|\begin{array}{ccc} \hat{i} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 5 & -1 & 7 \\ 1 & 2 & 3 \end{array}\right|\)
⇒ \(\frac{1}{2}|-17 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}|=\frac{1}{2} \sqrt{474}\)
Hence option(2} is correct
Applications of Vectors Question 9:
Forces of magnitude 5, 3, 1 units acts in directions 6i + 2j + 3k, 3i -2j + 6k, 2i - 3j - 6k respectively on a particle which is displaced the point (2, -1, -3) to (5, -1, 1). The total work done by the force is
Answer (Detailed Solution Below)
Applications of Vectors Question 9 Detailed Solution
Concept:
The work done \(\rm W =(\vec{F_r})\cdot(\vec{dx})\)
where \(\rm \vec{F_r}\) is the resultant force, and \(\rm \vec{dx}\) is the displacement
The unit vector in the direction of a \(\rm \vec P= \hat P={\vec P\over\left|\vec P\right|}\)
Calculation:
The initial position of the particle (A) = 2i - j - 3k
The initial position of the particle (B) = 5i - j + k
Displacement \(\rm \vec{dx}\) = B - A = (5i - j + k) - (2i - j - 3k) = 3i + 4k
First force F1 = magnitude of the 1st force × unit vector in the given direction
⇒ \(\rm \vec {F_1}=5\times{6i+2j+3k\over\left|6i+2j+3k\right|}\)
⇒ \(\boldsymbol{\rm \vec {F_1}={30i+10j+15k\over7}}\)
Second force F2 = magnitude of the 2nd force × unit vector in the given direction
⇒ \(\rm \vec {F_2}=3\times{3i-2j+6k\over\left|3i-2j+6k\right|}\)
⇒ \(\boldsymbol{\rm \vec {F_2}={9i-6j+18k\over7}}\)
Third force F3 = magnitude of the 3rd force × unit vector in the given direction
⇒ \(\rm \vec {F_3}=1\times{2i-3j-6k\over\left|2i-3j-6k\right|}\)
⇒ \(\boldsymbol{\rm \vec {F_3}={2i-3j-6k\over7}}\)
Resultant Force \(\rm \vec{F_r} =\vec{F_1}+\vec{F_2}+\vec{F_3}\)
⇒ \(\rm \vec{F_r} ={30i+10j+15k\over7}+{9i-6j+18k\over7}+{2i-3j-6k\over7}\)
⇒ \(\boldsymbol{\rm \vec{F_r} ={41i+j+27k\over7}}\)
The work done by the forces:
\(\rm W =(\vec{F_r})\cdot(\vec{dx})\)
⇒ \(\rm W =\left({41i+j+27k\over7}\right)\cdot(3i+4k)\)
⇒ \(\rm W =\left({123+0+108\over7}\right)={231\over7}\)
⇒ \(\boldsymbol{\rm W =33}\) units
Applications of Vectors Question 10:
Find the value of λ, for which the vectors \(\vec a = 2\hat i - \hat j + \hat k, \vec b = \;\hat i + 2\hat j + 3\hat k\;and\; \vec c = 3\hat i + \lambda \hat j + 5\hat k\) are coplanar?
Answer (Detailed Solution Below)
Applications of Vectors Question 10 Detailed Solution
CONCEPT:
If vectors \(\vec a, \vec b \ and\ \vec c\) are coplanar then \(\left[ {a\;b\;c} \right] = 0\) where \(\left[ {a\;b\;c} \right] = \vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right|\)
CALCULATION:
Given: Vectors \(\vec a = 2\hat i - \hat j + \hat k, \vec b = \hat i + 2\hat j + 3\hat k\;and\; \vec c = 3\hat i + λ \hat j + 5\hat k\) are coplanar
As we know that, if vectors \(\vec a, \vec b \ and\ \vec c\) are coplanar then \(\left[ {a\;b\;c} \right] = 0\) where \(\left[ {a\;b\;c} \right] = \vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right|\)
Here, a1 = 2, b1 = - 1, c1 = 1
Similarly, a2 = 1, b2 = 2, c2 = 3
Similarly, a3 = 3, b3 = λ, c3 = 5
\(⇒ [a \ b\ c] = \left| {\begin{array}{*{20}{c}} {{2}}&{{1}}&{{3}}\\ {{-1}}&{{2}}&{{\lambda }}\\ {{1}}&{{3}}&{{5}} \end{array}} \right| = 10 - 5λ\)
∵ The given vectors are coplanar
⇒ 10 - 5λ = 0
⇒ λ = 2
Hence, option A is the correct answer.