Geometrical applications MCQ Quiz in தமிழ் - Objective Question with Answer for Geometrical applications - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 19, 2025

பெறு Geometrical applications பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Geometrical applications MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Geometrical applications MCQ Objective Questions

Top Geometrical applications MCQ Objective Questions

Geometrical applications Question 1:

The three vertices of a parallelogram ABCD are A (1, 2, 3), B (-1, -2, -1) and C (2, 3, 2). The coordinates of the fourth vertex D are 

  1. (-2, -3, 0)
  2. (4, 7, 6)
  3. (2, 3, 4)
  4. (-2, -3, 4)

Answer (Detailed Solution Below)

Option 2 : (4, 7, 6)

Geometrical applications Question 1 Detailed Solution

Given:

Three out of the four vertex of the parallelogram -

A = (1, 2, 3)

B = (-1, -2, -1)

C = (2, 3, 2)

Concept:

The diagonals of a paralleogram bisect each other.

Formula:

The mid-point of the line segment joining A (x1, y1, z1) and B (x2, y2, z2) is given by -

M (x, y, z) where \(x = \frac{x_1 + x_2}{2}\)\(y = \frac{y_1 + y_2}{2}\) and \(z = \frac{z_1 + z_2}{2}\)

Solution:

Let the midpoint of AC be M, then it is also the midpoint of BD

Now, M = (\(\frac{1+2}{2}\)\(\frac{2+3}{2}\)\(\frac{3+2}{2}\))

= (3/2, 5/2, 5/2)

Let D = (a, b, c)

Then, the midpoint of BD is given by (\(\frac{a-1}{2}\), \(\frac{b-2}{2}\)\(\frac{c-1}{2}\))

Equating it to M, we get a = 4, b = 7, c = 6

Hence D = (4, 7, 6)

Geometrical applications Question 2:

ABCD is a quadrilateral whose diagonals are AC and BD. Which one of the following is correct?

  1. \(\overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{CD}}} = \overrightarrow {{\rm{AC}}} + \overrightarrow {{\rm{DB}}} \)
  2. \(\overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{CD}}} = \overrightarrow {{\rm{BD}}} + \overrightarrow {{\rm{CA}}} \)
  3. \(\overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{CD}}} = \overrightarrow {{\rm{AC}}} + \overrightarrow {{\rm{BD}}} \)
  4. \(\overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{CD}}} = \overrightarrow {{\rm{BC}}} + \overrightarrow {{\rm{AD}}}\)

Answer (Detailed Solution Below)

Option 2 : \(\overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{CD}}} = \overrightarrow {{\rm{BD}}} + \overrightarrow {{\rm{CA}}} \)

Geometrical applications Question 2 Detailed Solution

Concept:

Triangle Law of Vector Addition: Triangle law of vector addition states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.

F1 A.K Madhu 26.06.20 D2

\(\Rightarrow {\rm{\vec R}} = {\rm{\vec A}} + {\rm{\vec B}}\)

Calculation:

F1 A.K Madhu 26.06.20 D3

In triangle ABC,

\( \Rightarrow \overrightarrow {{\rm{BA}}} {\rm{\;}} + \overrightarrow {{\rm{AC}}} {\rm{\;}} = \overrightarrow {{\rm{BC}}} \)               …. (1)

In triangle BCD,

\(\Rightarrow \overrightarrow {{\rm{BC}}} + \overrightarrow {{\rm{CD}}} \; = \;\overrightarrow {{\rm{BD}}} \;\)            …. (2)

Put the value of BC vector in equation 2nd,

\(\Rightarrow \overrightarrow {{\rm{BA}}} {\rm{\;}} + \overrightarrow {{\rm{AC}}} {\rm{\;}} + \overrightarrow {{\rm{CD}}} \; = \;\overrightarrow {{\rm{BD}}} \)

\(\Rightarrow \overrightarrow {{\rm{BA}}} - \overrightarrow {{\rm{CA}}} {\rm{\;}} + \overrightarrow {{\rm{CD}}} \; = \;\overrightarrow {{\rm{BD}}}\)                           \( \left(\because {\overrightarrow {{\rm{AC}}} = \; - \overrightarrow {{\rm{CA}}} } \right)\) 

\(\therefore \overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{CD}}} = \overrightarrow {{\rm{BD}}} + \overrightarrow {{\rm{CA}}}\)

Geometrical applications Question 3:

The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to

  1. 9 sq. units
  2. 18 sq. units
  3. 27 sq. units
  4. 81 sq. units

Answer (Detailed Solution Below)

Option 1 : 9 sq. units

Geometrical applications Question 3 Detailed Solution

Calculation:

We have A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2)

∴ \(\overrightarrow{AB}=(2-0) \hat{i}+(3-4) \hat{j}+(-1-1) \hat{k}=2 \hat{i}-\hat{j}-2 \hat{k}\)

\(\overrightarrow{B C}=(4-2) \hat{i}+(5-3) \hat{j}+(0+1) \hat{k}=2 \hat{i}+2 \hat{j}+\hat{k}\)

\(\overrightarrow{C D}=(2-4) \hat{i}+(6-5) \hat{j}+(2-0) \hat{k}=-2 \hat{i}+\hat{j}+2 \hat{k}\)

\(\overrightarrow{D A}=(0-2) \hat{i}+(4-6) \hat{j}+(1-2) \hat{k}=-2 \hat{i}-2 \hat{j}-\hat{k}\)

∴ Area of quadrilateral ABCD:

\(|\overrightarrow{A B} \times \overrightarrow{B C}|\)

\(\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{array}\right|\)

\(|\hat i(-1+4)-\hat j(2+4)+\hat k(4+2)|\)

\(|3 \hat{i}-6 \hat{j}+6 \hat{k}|\)

\(\sqrt{9+36+36}\)

= 9 sq. units

∴ The area of the quadrilateral ABCD is equal to 9 sq. units.

The correct answer is option 1

Geometrical applications Question 4:

What is the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) ?

  1. \(\dfrac{\sqrt{145}}{2}\)
  2. \(\dfrac{\sqrt{135}}{2}\)
  3. \(\dfrac{\sqrt{165}}{2}\)
  4. \(\dfrac{\sqrt{125}}{2}\)
  5. \(\dfrac{\sqrt{175}}{2}\)

Answer (Detailed Solution Below)

Option 3 : \(\dfrac{\sqrt{165}}{2}\)

Geometrical applications Question 4 Detailed Solution

Concept:

Let A, B , and C be the vertices of the \(\triangle ABC\) , then the area of that triangle = \(\rm \dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)

Calculations:

Given, triangle whose vertices are at A = (3, -1, 2) = \(\rm 3\vec i -\vec j + 2\vec k\)

B = (1, -1, -3) =  \(\rm \vec i -\vec j - 3\vec k\)

and C = (4, -3, 1) =  \(\rm 4\vec i -3\vec j + \vec k\)

Let A, B , and C be the vertices of the \(\triangle ABC\) , then the area of that triangle = \(\rm \dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)

\(\rm \vec {AB} = \rm (\vec i -\vec j - 3\vec k) - (3\vec i -\vec j + 2\vec k)\)

\(\rm \vec {AB}= -2\vec i + 0\vec k -5 \vec k\)

\(\rm \vec {AC} = \rm (4\vec i -3\vec j + \vec k) - (3\vec i -\vec j + 2\vec k)\)

⇒ \(\rm \vec {AC} = \vec i -2\vec j -\vec k\)

Now, \(\rm \vec {AB}\times\vec {AC}= \)\(\begin{vmatrix} \vec i&\vec j & \vec k \\ -2& 0 & -5 \\ 1 & -2 & -1 \end{vmatrix}\)

\(\rm \vec {AB} \times \vec {AC} = \vec i (-10)-\vec j(2+5)+\vec k(4-0)\)

\(\rm \vec {AB} \times \vec {AC} = -10\vec i -7\vec j+4\vec k\)

⇒ \(\rm |\vec {AB} \times \vec {AC}| = \sqrt {(-10)^2+(-7)^2+(4)^2 }\)

\(\rm |\vec {AB} \times \vec {AC}| = \sqrt {165}\)

The area of that triangle = \(\dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)

⇒ The area of that triangle = \(\dfrac 12 \times \sqrt {165}\)
Hence, the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) is \(\dfrac {\sqrt {165}}{2}\)

Geometrical applications Question 5:

Find the unit tangent vector at t = 2 on the curve x = t2 + 2, y = 4t - 5, z = 2t2 - 6t.

  1. \(\dfrac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})\)
  2. \(\dfrac{1}{\sqrt{6}}(2\hat{i}+\hat{j}+\hat{k})\)
  3. \(\dfrac{1}{3}(2\hat{i}+2\hat{j}+\hat{k})\)
  4. \(\dfrac{1}{3}(\hat{i}+\hat{j}+\hat{k})\)

Answer (Detailed Solution Below)

Option 3 : \(\dfrac{1}{3}(2\hat{i}+2\hat{j}+\hat{k})\)

Geometrical applications Question 5 Detailed Solution

Given

x = t2 + 2, y = 4t - 5, z = 2t2 - 6t

unit tangent vector is given as,

\(\vec r\frac{{\frac{{dx}}{{dt}}\hat i + \frac{{dy}}{{dt}}\hat j + \frac{{dz}}{{dt}}\hat k}}{{\sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left(r {\frac{{dy}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2}}}}\)

\({\left. {\frac{{dx}}{{dt}}} \right|_{t = 2}} = \frac{d}{{dt}}({t^2} + 2) = 2t = 4\)

\({\left. {\frac{{dy}}{{dt}}} \right|_{t = 2}} = \frac{d}{{dt}}(4t - 5) = 4\)

\({\left. {\frac{{dz}}{{dt}}} \right|_{t = 2}} = \frac{d}{{dt}}(2{t^2} - 6t)\)  = 4t - 6 = 4 × 2 - 6 = 2

\(\vec r = \frac{{4\hat i + 4\hat j + 2\hat k}}{{\sqrt {{4^2} + {4^2} + {2^2}} }}\)\( = \frac{{4\hat i + 4\hat j + 2\hat k}}{{\sqrt {36} }}\)

\(\vec r = \frac{{2\left( {2\hat i + 2\hat j + \hat k} \right)}}{6}\)

\(\vec r = \frac{1}{3} \left( {2\hat i + 2\hat j + \hat k} \right)\)

Geometrical applications Question 6:

Let \(\rm \vec{a}\), \(\rm \vec{b}\) and \(\rm \vec{c}\) be the position vectors of the three vertices A, B, C of a triangle respectively. Then the area of this triangle is given by:

  1. \(\rm \dfrac{1}{2} (\vec{a}\times \vec{b})\vec{c}\)
  2. \(\rm \dfrac{1}{2} |\vec{a}\times \vec{b} + \vec{b} \times \vec{c}+\vec{c}\times \vec{a}|\)
  3. \(\rm \vec{a}\times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\rm \dfrac{1}{2} |\vec{a}\times \vec{b} + \vec{b} \times \vec{c}+\vec{c}\times \vec{a}|\)

Geometrical applications Question 6 Detailed Solution

Concept:

If the position vectors of points A and B are \(\rm \vec {a}\) and \(\rm \vec {b}\) respectively, then \(\rm \vec {AB}=\vec b - \vec a\).

 

Area of a Triangle with vectors \(\rm \vec {AB}\) and \(\rm \vec {AC}\) as its sides is given by: \(\rm Area=\dfrac12|\vec{A}\times\vec{B}|\).

 

Cross Product: For two vectors \(\rm \vec {A}=a_1\hat i+a_2\hat j+a_3\hat k\) and \(\rm \vec {B}=b_1\hat i+b_2\hat j+b_3\hat k\), their cross product is given by:

  • \(\rm \vec A \times \vec B=\begin{vmatrix} \rm \hat i & \rm \hat j & \rm \hat k\\ \rm a_1& \rm a_2 & \rm a_3\\ \rm b_1 & \rm b_2 & \rm b_3\end{vmatrix}=(a_2b_3-a_3b_2)\hat i+(a_3b_1-a_1b_3)\hat j+(a_1b_2-a_2b_1)\hat k\).
  • \(\rm \vec A\times\vec B=-\left(\vec B \times \vec A\right)\).
  • \(\rm \vec A\times\vec A=0\).

 

The magnitude \(\rm |\vec A|\) of a vector \(\rm \vec {A}=a_1\hat i+a_2\hat j+a_3\hat k\) is given by: \(\rm |\vec A|=\sqrt{a_1^2+a_2^2+a_3^2}\).

 

Calculation:

We have \(\rm \vec {AB}=\vec b - \vec a\) and \(\rm \vec {AC}=\vec a - \vec c\).

Using the formula for the area of a triangle:

\(\rm Area=\dfrac{1}{2}\left|\vec {AB}\times\vec {AC}\right|\)

\(\rm \dfrac{1}{2}\left|\left(\vec b-\vec a\right)\times\left(\vec c-\vec a\right)\right|\)

\(\rm \dfrac{1}{2}\left|\vec b\times\vec c-\vec b\times\vec a -\vec a\times\vec c+\vec a\times\vec a\right|\)

\(\rm \dfrac{1}{2} |\vec{a}\times \vec{b} + \vec{b} \times \vec{c}+\vec{c}\times \vec{a}|\).

 

Additional Information

Area of a parallelogram with vectors \(\rm \vec {a}\) and \(\rm \vec {b}\) as its sides is given by: \(\rm Area=\left|\vec{a}\times\vec{b}\right|\).

For two vectors \(\rm \vec A\) and \(\rm \vec B\) at an angle θ to each other:

  • Dot Product is defined as: \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).
  • Cross Product is defined as: \(\rm \vec A\times \vec B=\hat n|\vec A||\vec B|\sin \theta\), where \(\rm \hat n\) is the unit vector perpendicular to the plane containing \(\rm \vec A\) and \(\rm \vec B\).

Geometrical applications Question 7:

What is the interior acute angle of the parallelogram whose sides are represented by the vectors \(\frac{1}{{\sqrt {2} }}{\rm{\hat i}} - \frac{1}{{\sqrt 2 }}{\rm{\hat j}} + {\rm{\hat k}}\)  and \(\frac{1}{{\sqrt {2} }}{\rm{\hat i}} + \frac{1}{{\sqrt 2 }}{\rm{\hat j}} + {\rm{\hat k}}\)?

  1. 60°
  2. 45°
  3. 30°
  4. 15°

Answer (Detailed Solution Below)

Option 1 : 60°

Geometrical applications Question 7 Detailed Solution

Concept:

\({\rm{\vec a}}.{\rm{\vec b}}= |{\rm{\vec a}}|.|{\rm{\vec b}}|\cos \theta\)

 

Calculation:

Let, \(\vec{a}=\frac{1}{{\sqrt {2} }}{\rm{\hat i}} - \frac{1}{{\sqrt 2 }}{\rm{\hat j}} + {\rm{\hat k}}\) and \(\vec{b}=\frac{1}{{\sqrt {2} }}{\rm{\hat i}} + \frac{1}{{\sqrt 2 }}{\rm{\hat j}} + {\rm{\hat k}}\)

\(\begin{array}{l} \operatorname{cos\theta}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \\ \\ {\vec{a} \cdot \vec{b}}=\left(\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}+\hat{k}\right) \cdot\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\hat{k}\right) \\ = \frac{1}{2}-\frac{1}{2}+1 \\ =1 \end{array}\)

And,

\(\begin{aligned} |\vec{a}| &=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(-\frac{1}{\sqrt{2}}\right)^{2}+(1)^{2}} \\ &=\sqrt{\frac{1}{2}+\frac{1}{2}+1} \\ &=\sqrt{2} \end{aligned}\\ \begin{aligned} |\vec{b}| &=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+(1)^{2}} \\ &=\sqrt{\frac{1}{2}+\frac{1}{2}+1} \\ &=\sqrt{2} \end{aligned}\)

\(\begin{array}{l} \therefore\cos \theta=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2} \\ \Rightarrow\theta=60^{\circ} \end{array}\)

Hence, option (1) is correct.

Geometrical applications Question 8:

What is the area of the triangle OAB where O is the origin, \(\overrightarrow {{\rm{OA}}} = 3{\rm{\;\hat i}} - {\rm{\;\hat j}} + {\rm{\;\hat k}}\) and \(\overrightarrow {{\rm{OB}}} = 2{\rm{\hat i}} + {\rm{\;\hat j}} - 3{\rm{\hat k}}\)?

  1. \(5\sqrt 6 \) square unit
  2. \(\frac{{5\sqrt 6 }}{2}\) square unit
  3. √6 square unit
  4. \(\sqrt {30} \) square unit

Answer (Detailed Solution Below)

Option 2 : \(\frac{{5\sqrt 6 }}{2}\) square unit

Geometrical applications Question 8 Detailed Solution

Concept:

\(\begin{array}{l} \vec{a}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\\ \vec{b}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k} \\ \vec{a} \times \vec{b}=\left|\begin{array}{ccc} \hat{i} & j & \hat{k} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \end{array}\right| \end{array}\)

Calculation:

We have, \(\overrightarrow {{\rm{OA}}} = 3{\rm{\;\hat i}} - {\rm{\;\hat j}} + {\rm{\;\hat k}}\)   and \(\overrightarrow {{\rm{OB}}} = 2{\rm{\hat i}} + {\rm{\;\hat j}} - 3{\rm{\hat k}}\)

\(\begin{aligned} \overrightarrow{O A} \times \overrightarrow{O B} &=\left|\begin{array}{ccc} \hat{i} & \hat{j}&\hat{k}\\ 3 & -1 & 1 \\ 2 & 1 & -3 \end{array}\right| \\ &=i(3-1)-\hat{j}(-9-2)+\widehat{k}(3+2) \\ &=2 \hat{i}+11 \hat{j}+5 \hat{k} \end{aligned}\)

Now, 

\(\begin{aligned} |\overrightarrow{OA} \times \overrightarrow{O B}| &=\sqrt{(2)^{2}+(11)^{2}+(5)^{2}} \\ &=\sqrt{4+121+25} \\ &=\sqrt{150} \\&=5√6 \end{aligned}\)

Area of triangle =  \(\frac{1}{2}|\overrightarrow{OA} \times \overrightarrow{O B}|\)

= 1/2(5√6)

= ​​\(\frac{{5\sqrt 6 }}{2} \)square unit

Hence, option (2) is correct.

Geometrical applications Question 9:

ABCD is a parallelogram and P is the point of intersection of the diagonals. If O is the origin, then \(\overrightarrow {{\rm{OA}}} + \overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{OC}}} + \overrightarrow {{\rm{OD}}} \) is equal to

  1. \(4{\rm{\;}}\overrightarrow {{\rm{OP}}} \)
  2. \(2{\rm{\;}}\overrightarrow {{\rm{OP}}} \)
  3. \(\overrightarrow {{\rm{OP}}} \)
  4. Null vector

Answer (Detailed Solution Below)

Option 1 : \(4{\rm{\;}}\overrightarrow {{\rm{OP}}} \)

Geometrical applications Question 9 Detailed Solution

Calculation:

F1 A.K 23.7.20 Pallavi D1

By vector law,              

Similarly,    \(\begin{array}{l} \overrightarrow{O A}+\overrightarrow{A P}=\overrightarrow{O P} \\ \overrightarrow{O B}+\overrightarrow{B P}=\overrightarrow{O P} \\ \overrightarrow{O C}+\overrightarrow{C P}=\overrightarrow{O P} \\ \overrightarrow{O D}+\overrightarrow{D P}=\overrightarrow{O P} \end{array}\)

Now, adding the above equations, we get 

\(\begin{array}{l} \overrightarrow{O A}+\overrightarrow{A P}+\overrightarrow{O B}+\overrightarrow{B P}+\overrightarrow{O C}+\overrightarrow{C P}+\overrightarrow{O D}+\overrightarrow{D P}=4 \overrightarrow{O P} \\ \Rightarrow(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D})+(\overrightarrow{A P}+\overrightarrow{B P}+\overrightarrow{C P}+\overrightarrow{D P})=4 \overrightarrow{O P} \end{array}\)

From fig, AP = - BP and CP = -DP

∴ \(\overrightarrow {{\rm{OA}}} + \overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{OC}}} + \overrightarrow {{\rm{OD}}} \) 

= 4 OP 

 Hence, option (1) is correct.

Geometrical applications Question 10:

What is the area of the rectangle having vertices A, B, C and D with position vectors \(\rm -\hat{i} + \frac{1}{2} \hat {j} + 4 \hat {k}, \hat{i} + \frac{1}{2} \hat {j} + 4 \hat {k}, \hat{i} - \frac{1}{2} \hat {j} + 4 \hat {k} \ and \ -\hat{i} - \frac{1}{2} \hat {j} + 4 \hat {k}\) ?

  1. 1/2 sq unit
  2. 1 sq unit
  3. 2 sq units
  4. 4 sq units

Answer (Detailed Solution Below)

Option 3 : 2 sq units

Geometrical applications Question 10 Detailed Solution

Concept:

Area of rectangle ABCD = |AB| × |BC|

{Product of adjacent sides}

Calculation:

A = \(\rm -\hat{i} + \frac{1}{2} \hat {j} + 4 \hat {k},\) B = \(\rm \hat{i} + \frac{1}{2} \hat {j} + 4 \hat {k} \)

⇒ AB = \(\rm (1-(-1))\hat{i} +( \frac{1}{2} -\frac{1}{2})\hat {j} + (4-4) \hat {k}, \)

⇒ AB = \(2\hat {i}\)

⇒ |AB| = 2

Similarly,

B = \(\rm \hat{i} +\frac{1}{2} \hat {j} + 4 \hat {k} \), C = \(\rm \hat{i} - \frac{1}{2} \hat {j} + 4 \hat {k},\)

⇒ BC = \(\rm (1-1)\hat{i} +( -\frac{1}{2} -(\frac{1}{2}))\hat {j} + (4-4) \hat {k}, \)

⇒ BC = \(-\hat {j}\)

⇒ |BC| = 1

⇒ Area of rectangle ABCD = |AB| × |BC|

⇒ Area of rectangle ABCD = 2 × 1 = 2 sq unit

∴ The correct answer is option (3).

Get Free Access Now
Hot Links: teen patti club teen patti all games yono teen patti teen patti joy 51 bonus teen patti master new version