Trigonometric Ratios and Identities MCQ Quiz - Objective Question with Answer for Trigonometric Ratios and Identities - Download Free PDF

Last updated on May 23, 2025

Testbook provides a wide range of Trigonometric Ratios and Identities Questions with its solutions and explanations. Trigonometric Ratios and Identities provide a base for trigonometric calculations. With the help of the Testbook, you can solve Trigonometric Ratios and Identities objective questions that could be asked in Banking, State CET, Railways, etc within no time. Read this article and solve these questions to know some tips and tricks and to master this section.

Latest Trigonometric Ratios and Identities MCQ Objective Questions

Trigonometric Ratios and Identities Question 1:

sinθ/cosθ  = ?

  1. tanθ 
  2. cotθ 
  3. cosecθ 
  4. secθ 

Answer (Detailed Solution Below)

Option 1 : tanθ 

Trigonometric Ratios and Identities Question 1 Detailed Solution

Given:

Expression = sinθ/cosθ

Calculations:

The ratio of the sine of an angle to the cosine of the same angle is defined as the tangent of that angle.

\(\dfrac{\sin\theta}{\cos\theta}\) = tanθ

∴ The correct  answer is option 1.

Trigonometric Ratios and Identities Question 2:

If the perpendicular and base of a right-angle triangle are equal, then which of the following is correct?

  1. sinθ = 1/√2 
  2. cosθ = 1/2
  3. tanθ = √3 
  4. sinθ = 1/2

Answer (Detailed Solution Below)

Option 1 : sinθ = 1/√2 

Trigonometric Ratios and Identities Question 2 Detailed Solution

Given:

In a right-angled triangle, perpendicular = base

Formula used:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

tanθ = opposite / adjacent

Calculations:

Since perpendicular = base, the triangle is isosceles right-angled.

Let each side = 1 unit.

Hypotenuse = √(1² + 1²) = √2

sinθ = 1 / √2 = 1 / 1.414 = 0.707 ≈ 1/√2

cosθ = 1 / √2 = 1/√2 (not 1/2)

tanθ = 1 / 1 = 1 (not √3)

sinθ ≠ 1/2

∴ The correct statement is: sinθ = 1/√2.

Trigonometric Ratios and Identities Question 3:

If p sin A - cos A = 1, then p2 - (1 + p2) cos A equals:

  1. 1
  2. -1
  3. 2
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 1

Trigonometric Ratios and Identities Question 3 Detailed Solution

Given:

If p sin A - cos A = 1

Formula Used:

sin 90∘ = 1

cos 90∘ = 0

Calculation:

p sin A - cos A = 1

To get the value of p put A = 90

\( (p \sin 90^\circ - \cos 90^\circ) = 1 \)

p × 1 - 0 = 1

p = 1

Putting A = 90° and p = 1 in p2 - (1 + p2) cos A:

p2 - (1 + p2) cos A = 12 - (1 - 12)cos 90° 

⇒ 1 - (1 + 1) × 0 

⇒ 1 - 2 × 0 = 1 - 0 = 1

∴ The value of p2 - (1 + p2) cos A = 1.

Alternate Method

Concept used:

if cosecθ + cotθ = x, then cosecθ - cotθ = 1/x

Calculation:

p sin A - cos A = 1

⇒ p sin A = 1 + cos A

⇒ p = (1 + cos A)/ sinA

⇒ p = cosec A + cot A

So, cosec A - cot A = 1/p

Now,

p + 1/p = 2 cosec A

p - 1/p = 2 cot A

So, p2 - (1 + p2) cos A

⇒ p2- p(1/p + p) cosA

⇒ p2 - p(2cosecA) cosA

⇒ p2- p (2/sin A) cosA

⇒ p2 - p (2 cotA)

⇒ p2 - p (p - 1/p)

⇒ p2 - p2 + 1 = 1

∴ The correct answer is option (1).

Trigonometric Ratios and Identities Question 4:

If tan2 A - 6 tan A + 9 = 0, 0 < A < 90°, what is the value of 6 cot A + 8\(\sqrt{10} \) cos A?

  1. 8\(\sqrt{10}\)
  2. 10\(\sqrt{10}\)
  3. 10
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 10

Trigonometric Ratios and Identities Question 4 Detailed Solution

Given:

tan2A - 6tanA + 9 = 0

Concept used:

tanθ = P/B

cotθ = 1/tanθ

cosθ = B/H

Here,

P = Perpendicular

B = Base

H = Hypotenuse 

Pythagoras theorem = H2 = P2 + B2

Calculation:

tan2A - 6tanA + 9 = 0

⇒ tan2A - 2 × 3 × tanA + 9 = 0

⇒ (tanA - 3)2 = 0

⇒ (tanA - 3) = 0

⇒ tanA  = 3

So, P/B = 3/1

Now,

H2 = 32 + 12

⇒ H2 = 9 + 1

 H2 = 10

⇒ H = √10

So, cosA = 1/√10

Now,

6 cot A + 8\(√{10} \) cos A = 6 × (1/3) + 8\(√{10} \) × (1/√10)

⇒ 2 + 8

⇒ 10

∴ Required answer is 10.

Shortcut Trick

tan2A - 6tanA + 9 = 0

⇒ (tanA - 3)2 = 0

⇒ (tanA - 3) = 0

⇒ tanA  = 3

⇒ cotA = 1/3

cosA = 1 ÷  \(\sqrt{sec^2A}\)

⇒ 1 ÷\(\sqrt{1 + tan^2A}\)

⇒ 1 ÷\(\sqrt{1 + 9}\) = \(\frac {1}{\sqrt{10}}\)

Now,

6 cot A + \(8\sqrt{10}\) cos A

⇒ 6 × (1/3) + \(8\sqrt{10}\) × \(\frac {1}{\sqrt{10}}\)

⇒ 2 + 8 = 10

∴ The value of 6 cot A + 8\(\sqrt{10} \) cos A is 10.

Trigonometric Ratios and Identities Question 5:

If cos (x - y) \(=\frac{\sqrt 3}{2}\) and sin (x + y) \(=\frac{1}{2}\), then the value of x (0 ≤ x ≤ 90) is:

  1. 45° 
  2. 30°
  3. 15°
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 30°

Trigonometric Ratios and Identities Question 5 Detailed Solution

Given:

cos (x - y) = √3/2

sin (x + y) = 1/2

Formula:

cos30° = √3/2

sin30° = 1/2

Calculation:

cos(x - y) = √3/2

⇒ cos(x - y) = cos30°

(x - y) = 30°     ---- (1)

sin(x + y) = 1/2

⇒ sin(x + y) = sin30°

(x + y) = 30    ---- (2)

Add equation (1) and equation (2), we get

2x = 60°

∴ x = 30°

Top Trigonometric Ratios and Identities MCQ Objective Questions

The value of tan2θ + cot2θ  - sec2θ cosec2θ is:

  1. 2
  2. -2
  3. 0
  4. 1/2

Answer (Detailed Solution Below)

Option 2 : -2

Trigonometric Ratios and Identities Question 6 Detailed Solution

Download Solution PDF

Given:

tan2θ + cot2θ  - sec2θ cosec2θ
Concept used:

1. tanα = sinα/cosα

2. cotα = 1/tanα

3. secα = 1/cosα

4. cosecα = 1/sinα

5. (a + b)2 - 2ab = a2 + b2

6. sin2α + cos2α = 1

Calculation:

tan2θ + cot2θ  - sec2θ cosec2θ

⇒ \(\frac {sin^2θ}{cos^2θ} + \frac {cos^2θ}{sin^2θ} - \frac {1}{sin^2θ \times cos^2θ}\)

⇒ \(\frac {sin^4θ + cos^4θ - 1}{sin^2θ \times cos^2θ}\)

⇒ \(\frac {(sin^2θ + cos^2θ)^2 - 2sin^2θ cos^2θ - 1}{sin^2θ \times cos^2θ}\)

⇒ \(\frac {(1)^2 - 2sin^2θ cos^2θ - 1}{sin^2θ \times cos^2θ}\)

⇒ \(\frac {-2sin^2θ cos^2θ}{sin^2θ \times cos^2θ}\)

⇒ -2

∴ The required answer is -2.

Shortcut Trick 

Use value putting method to solve this question, 

Use θ = 45° 
Trigo

tan2θ + cot2θ  - sec2θ cosec2θ
⇒ 12 + 12  - (√2)2(√2)2

⇒ 1 + 1 - 4

⇒ 2 - 4 = - 2

∴ The correct answer to this question is -2.

If sec2θ + tan2θ = 5/3, then what is the value of tan2θ?

  1. 2√3
  2. √3
  3. 1/√3
  4. Cannot be determined

Answer (Detailed Solution Below)

Option 2 : √3

Trigonometric Ratios and Identities Question 7 Detailed Solution

Download Solution PDF

Concept used: 

sec2(x) = 1 + tan2(x)

Calculation:

⇒ sec2θ + tan2θ = 5/3

⇒ 1 + tan2θ + tan2θ = 5/3

⇒ 2tan2θ = 2/3

⇒ tanθ = 1/√3

⇒ θ = 30

∴ tan(2θ) = tan(60) = √3

If the value of tanθ + cotθ = √3, then find the value of tan6θ + cot6θ.

  1. -2
  2. -1
  3. -3
  4. -4

Answer (Detailed Solution Below)

Option 1 : -2

Trigonometric Ratios and Identities Question 8 Detailed Solution

Download Solution PDF

Given:

tanθ + cotθ = √3

Formula used:

(a + b)= a3 + b3 + 3ab(a + b)

a2 + b2 = (a + b)2 - 2(a × b)

tanθ × cotθ = 1

Calculation:

tanθ + cotθ = √3

Taking cube on both sides, we get

(tanθ + cotθ)3 = (√3)3

⇒ tan3θ + cot3θ + 3 × tanθ × cotθ × (tanθ + cotθ) = 3√3

⇒ tan3θ + cot3θ + 3√3  = 3√3

⇒ tan3θ + cot3θ = 0  

Taking square on the both sides

(tan3θ + cot3θ)2 = 0

⇒ tan6θ + cot6θ + 2 × tan3θ × cot3θ = 0

⇒ tan6θ + cot6θ + 2 = 0    

⇒ tan6θ + cot6θ = - 2

∴ The value of tan6θ + cot6θ is - 2.

If sec4θ – sec2θ = 3 then the value of tan4θ + tan2θ is:

  1. 8
  2. 4
  3. 6
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Trigonometric Ratios and Identities Question 9 Detailed Solution

Download Solution PDF

As,

⇒ sec2θ = 1 + tan2θ

We have,

⇒ (sec2θ)2 – sec2θ = 3

⇒ (1 + tan2θ)2 – (1 + tan2θ) = 3

⇒ (1 + tan4θ + 2tan2θ) – (1 + tan2θ) = 3

⇒ 1 + tan4θ + 2tan2θ – 1 – tan2θ = 3

⇒ tan4θ + tan2θ = 3

Find the value of cos 2A cos 2B + sin2(A - B) - sin2(A + B)

  1. sin (2A − 2B)
  2. sin (2A + 2B)
  3. cos (2A + 2B)
  4. cos (2A − 2B)

Answer (Detailed Solution Below)

Option 3 : cos (2A + 2B)

Trigonometric Ratios and Identities Question 10 Detailed Solution

Download Solution PDF

Given:

cos 2A cos 2B + sin2(A - B) - sin2(A + B)

Concept used:

cos (a + b) = cos a cos b - sin a sin b

sin2a - sin2b = sin(a + b) sin(a - b)

Calculation:

cos 2A cos 2B + sin2(A - B) - sin2(A + B)

⇒ cos 2A cos 2B - [sin2(A + B) - sin2(A - B)] 

{sin2a - sin2b = sin(a + b) sin(a - b)}

⇒ cos 2A cos 2B - [sin(A + B + A - B) sin(A + B - A + B)]

⇒ cos 2A cos 2B - [sin(A + A) sin(B + B)]

⇒ cos 2A cos 2B - sin 2A sin 2B

⇒ cos (2A + 2B)

∴ The required answer is cos (2A + 2B).

If sec θ + tan θ = 5, then find the value of tan θ.

  1. \(\frac{5}{12}\)
  2. \(\frac{13}{5}\)
  3. \(\frac{13}{3}\)
  4. \(\frac{12}{5}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{12}{5}\)

Trigonometric Ratios and Identities Question 11 Detailed Solution

Download Solution PDF

Given:

sec θ + tan θ = 5

Concept used:

If sec θ + tan θ = y

then sec θ - tan θ = 1/y

Calculation:

sec θ + tan θ = 5  ----- (1)

then,

sec θ - tan θ = 1/5 ------- (2)

Subtracting the eq. (1) and (2)

⇒ (sec θ + tan θ) - (sec θ - tan θ) = (5 - 1/5)

⇒ sec θ + tan θ - sec θ + tan θ = 24/5

⇒ 2 × tan θ = 24/5

⇒ tan θ = 12/5

∴ The correct answer is 12/5.

(cos2Ø + 1/cosec2Ø) + 17 = x. What is the value of x2?

  1. 18
  2. 324
  3. 256
  4. 16

Answer (Detailed Solution Below)

Option 2 : 324

Trigonometric Ratios and Identities Question 12 Detailed Solution

Download Solution PDF

Formula Used:

1/Cosec Ø = Sin Ø 

Sin2Ø + Cos2Ø = 1

Calculation:

Cos2Ø + 1/Cosec2Ø + 17 = x

⇒ Cos2Ø + Sin2Ø + 17 = x

⇒ 1 + 17 = x

⇒ x = 18

⇒ x2 = 324

∴ The value of x2 is 324.

If sec θ - cos θ = 14 and 14 sec θ = x, then the value of x is _________.

  1. tan2 θ
  2. sec2 θ
  3. 2sec θ
  4. 2tan θ

Answer (Detailed Solution Below)

Option 1 : tan2 θ

Trigonometric Ratios and Identities Question 13 Detailed Solution

Download Solution PDF

Given:

secθ - cosθ = 14 and 14 secθ = x

Concept used:

\(Sec\theta =\frac{1}{Cos\theta}\)

Calculations:

According to the question,

⇒ \(sec\theta - cos\theta= 14\)

 \(\sec\theta-\frac{1}{sec\theta}=14\)

 \( sec²\theta-1=14sec\theta\)

 \(\tan^2\theta=14sec\theta\)      ----(\(sec²\theta-1=tan^2\theta\))

\(\ tan²\theta=x\)

∴ The value of x is \(tan²\theta\).

If cot4θ + cot2θ = 3, then cosec4θ – cosec2θ = ?

  1. 2
  2. 0
  3. 1
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Trigonometric Ratios and Identities Question 14 Detailed Solution

Download Solution PDF

Calculation:

cot4θ + cot2θ = 3

⇒ cos4θ/sin4θ + cos 2θ/sin 2θ 

cos 2θ(cos 2θ+ sin 2θ )/sin4θ = 3 (Taking LCM)

cos 2θ/sin4θ = 3

⇒ cot2θ . cosec2θ = 3

Now, cosec4θ – cosec2θ

⇒ cosec2θ(cosec2θ – 1)

⇒ cosec2θcot2θ = 3

∴ cosec4θ – cosec2θ = 3

Evaluate the following:

cos(36° + A).cos(36° - A) + cos(54° + A).cos(54° - A)

  1. sin 2A
  2. cos A
  3. sin A
  4. cos 2A

Answer (Detailed Solution Below)

Option 4 : cos 2A

Trigonometric Ratios and Identities Question 15 Detailed Solution

Download Solution PDF

Given:

cos (36° - A) cos (36° + A) + cos (54° - A) cos (54° + A)

Formula used:

cos (a - b) = cos a cos b + sin a sin b.

sin (90 - a) = cos a

Calculation:

⇒ sin[90 – (36 – A)]sin[90 – (36 + A)] + cos (54° – A) cos (54° + A)

⇒ sin(54º + A)sin(54º – A) + cos (54° – A)cos (54° + A)

⇒ Using the identity cos(A – B),

⇒ cos(54 + A – 54 + A) = cos(2A)

Therefore, the value of cos (36° - A) cos (36° + A) + cos (54° - A) cos (54° + A) is cos(2A).

Get Free Access Now
Hot Links: teen patti lotus teen patti comfun card online teen patti master teen patti go teen patti master gold