Trigonometric Ratios and Identities MCQ Quiz - Objective Question with Answer for Trigonometric Ratios and Identities - Download Free PDF
Last updated on May 23, 2025
Latest Trigonometric Ratios and Identities MCQ Objective Questions
Trigonometric Ratios and Identities Question 1:
sinθ/cosθ = ?
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 1 Detailed Solution
Given:
Expression = sinθ/cosθ
Calculations:
The ratio of the sine of an angle to the cosine of the same angle is defined as the tangent of that angle.
⇒ \(\dfrac{\sin\theta}{\cos\theta}\) = tanθ
∴ The correct answer is option 1.
Trigonometric Ratios and Identities Question 2:
If the perpendicular and base of a right-angle triangle are equal, then which of the following is correct?
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 2 Detailed Solution
Given:
In a right-angled triangle, perpendicular = base
Formula used:
sinθ = opposite / hypotenuse
cosθ = adjacent / hypotenuse
tanθ = opposite / adjacent
Calculations:
Since perpendicular = base, the triangle is isosceles right-angled.
Let each side = 1 unit.
Hypotenuse = √(1² + 1²) = √2
sinθ = 1 / √2 = 1 / 1.414 = 0.707 ≈ 1/√2
cosθ = 1 / √2 = 1/√2 (not 1/2)
tanθ = 1 / 1 = 1 (not √3)
sinθ ≠ 1/2
∴ The correct statement is: sinθ = 1/√2.
Trigonometric Ratios and Identities Question 3:
If p sin A - cos A = 1, then p2 - (1 + p2) cos A equals:
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 3 Detailed Solution
Given:
If p sin A - cos A = 1
Formula Used:
sin 90∘ = 1
cos 90∘ = 0
Calculation:
p sin A - cos A = 1
To get the value of p put A = 90∘
\( (p \sin 90^\circ - \cos 90^\circ) = 1 \)
p × 1 - 0 = 1
p = 1
Putting A = 90° and p = 1 in p2 - (1 + p2) cos A:
p2 - (1 + p2) cos A = 12 - (1 - 12)cos 90°
⇒ 1 - (1 + 1) × 0
⇒ 1 - 2 × 0 = 1 - 0 = 1
∴ The value of p2 - (1 + p2) cos A = 1.
Alternate Method
Concept used:
if cosecθ + cotθ = x, then cosecθ - cotθ = 1/x
Calculation:
p sin A - cos A = 1
⇒ p sin A = 1 + cos A
⇒ p = (1 + cos A)/ sinA
⇒ p = cosec A + cot A
So, cosec A - cot A = 1/p
Now,
p + 1/p = 2 cosec A
p - 1/p = 2 cot A
So, p2 - (1 + p2) cos A
⇒ p2- p(1/p + p) cosA
⇒ p2 - p(2cosecA) cosA
⇒ p2- p (2/sin A) cosA
⇒ p2 - p (2 cotA)
⇒ p2 - p (p - 1/p)
⇒ p2 - p2 + 1 = 1
∴ The correct answer is option (1).
Trigonometric Ratios and Identities Question 4:
If tan2 A - 6 tan A + 9 = 0, 0 < A < 90°, what is the value of 6 cot A + 8\(\sqrt{10} \) cos A?
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 4 Detailed Solution
Given:
tan2A - 6tanA + 9 = 0
Concept used:
tanθ = P/B
cotθ = 1/tanθ
cosθ = B/H
Here,
P = Perpendicular
B = Base
H = Hypotenuse
Pythagoras theorem = H2 = P2 + B2
Calculation:
tan2A - 6tanA + 9 = 0
⇒ tan2A - 2 × 3 × tanA + 9 = 0
⇒ (tanA - 3)2 = 0
⇒ (tanA - 3) = 0
⇒ tanA = 3
So, P/B = 3/1
Now,
H2 = 32 + 12
⇒ H2 = 9 + 1
⇒ H2 = 10
⇒ H = √10
So, cosA = 1/√10
Now,
6 cot A + 8\(√{10} \) cos A = 6 × (1/3) + 8\(√{10} \) × (1/√10)
⇒ 2 + 8
⇒ 10
∴ Required answer is 10.
Shortcut Trick
tan2A - 6tanA + 9 = 0
⇒ (tanA - 3)2 = 0
⇒ (tanA - 3) = 0
⇒ tanA = 3
⇒ cotA = 1/3
cosA = 1 ÷ \(\sqrt{sec^2A}\)
⇒ 1 ÷\(\sqrt{1 + tan^2A}\)
⇒ 1 ÷\(\sqrt{1 + 9}\) = \(\frac {1}{\sqrt{10}}\)
Now,
6 cot A + \(8\sqrt{10}\) cos A
⇒ 6 × (1/3) + \(8\sqrt{10}\) × \(\frac {1}{\sqrt{10}}\)
⇒ 2 + 8 = 10
∴ The value of 6 cot A + 8\(\sqrt{10} \) cos A is 10.
Trigonometric Ratios and Identities Question 5:
If cos (x - y) \(=\frac{\sqrt 3}{2}\) and sin (x + y) \(=\frac{1}{2}\), then the value of x (0 ≤ x ≤ 90) is:
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 5 Detailed Solution
Given:
cos (x - y) = √3/2
sin (x + y) = 1/2
Formula:
cos30° = √3/2
sin30° = 1/2
Calculation:
cos(x - y) = √3/2
⇒ cos(x - y) = cos30°
(x - y) = 30° ---- (1)
sin(x + y) = 1/2
⇒ sin(x + y) = sin30°
(x + y) = 30 ---- (2)
Add equation (1) and equation (2), we get
2x = 60°
∴ x = 30°
Top Trigonometric Ratios and Identities MCQ Objective Questions
The value of tan2θ + cot2θ - sec2θ cosec2θ is:
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 6 Detailed Solution
Download Solution PDFGiven:
tan2θ + cot2θ - sec2θ cosec2θ
Concept used:
1. tanα = sinα/cosα
2. cotα = 1/tanα
3. secα = 1/cosα
4. cosecα = 1/sinα
5. (a + b)2 - 2ab = a2 + b2
6. sin2α + cos2α = 1
Calculation:
tan2θ + cot2θ - sec2θ cosec2θ
⇒ \(\frac {sin^2θ}{cos^2θ} + \frac {cos^2θ}{sin^2θ} - \frac {1}{sin^2θ \times cos^2θ}\)
⇒ \(\frac {sin^4θ + cos^4θ - 1}{sin^2θ \times cos^2θ}\)
⇒ \(\frac {(sin^2θ + cos^2θ)^2 - 2sin^2θ cos^2θ - 1}{sin^2θ \times cos^2θ}\)
⇒ \(\frac {(1)^2 - 2sin^2θ cos^2θ - 1}{sin^2θ \times cos^2θ}\)
⇒ \(\frac {-2sin^2θ cos^2θ}{sin^2θ \times cos^2θ}\)
⇒ -2
∴ The required answer is -2.
Shortcut Trick
Use value putting method to solve this question,
Use θ = 45°
tan2θ + cot2θ - sec2θ cosec2θ
⇒ 12 + 12 - (√2)2(√2)2
⇒ 1 + 1 - 4
⇒ 2 - 4 = - 2
∴ The correct answer to this question is -2.
If sec2θ + tan2θ = 5/3, then what is the value of tan2θ?
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 7 Detailed Solution
Download Solution PDFConcept used:
sec2(x) = 1 + tan2(x)
Calculation:
⇒ sec2θ + tan2θ = 5/3
⇒ 1 + tan2θ + tan2θ = 5/3
⇒ 2tan2θ = 2/3
⇒ tanθ = 1/√3
⇒ θ = 30
∴ tan(2θ) = tan(60) = √3If the value of tanθ + cotθ = √3, then find the value of tan6θ + cot6θ.
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 8 Detailed Solution
Download Solution PDFGiven:
tanθ + cotθ = √3
Formula used:
(a + b)3 = a3 + b3 + 3ab(a + b)
a2 + b2 = (a + b)2 - 2(a × b)
tanθ × cotθ = 1
Calculation:
tanθ + cotθ = √3
Taking cube on both sides, we get
(tanθ + cotθ)3 = (√3)3
⇒ tan3θ + cot3θ + 3 × tanθ × cotθ × (tanθ + cotθ) = 3√3
⇒ tan3θ + cot3θ + 3√3 = 3√3
⇒ tan3θ + cot3θ = 0
Taking square on the both sides
(tan3θ + cot3θ)2 = 0
⇒ tan6θ + cot6θ + 2 × tan3θ × cot3θ = 0
⇒ tan6θ + cot6θ + 2 = 0
⇒ tan6θ + cot6θ = - 2
∴ The value of tan6θ + cot6θ is - 2.
If sec4θ – sec2θ = 3 then the value of tan4θ + tan2θ is:
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 9 Detailed Solution
Download Solution PDFAs,
⇒ sec2θ = 1 + tan2θ
We have,
⇒ (sec2θ)2 – sec2θ = 3
⇒ (1 + tan2θ)2 – (1 + tan2θ) = 3
⇒ (1 + tan4θ + 2tan2θ) – (1 + tan2θ) = 3
⇒ 1 + tan4θ + 2tan2θ – 1 – tan2θ = 3
Find the value of cos 2A cos 2B + sin2(A - B) - sin2(A + B)
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 10 Detailed Solution
Download Solution PDFGiven:
cos 2A cos 2B + sin2(A - B) - sin2(A + B)
Concept used:
cos (a + b) = cos a cos b - sin a sin b
sin2a - sin2b = sin(a + b) sin(a - b)
Calculation:
cos 2A cos 2B + sin2(A - B) - sin2(A + B)
⇒ cos 2A cos 2B - [sin2(A + B) - sin2(A - B)]
{sin2a - sin2b = sin(a + b) sin(a - b)}
⇒ cos 2A cos 2B - [sin(A + B + A - B) sin(A + B - A + B)]
⇒ cos 2A cos 2B - [sin(A + A) sin(B + B)]
⇒ cos 2A cos 2B - sin 2A sin 2B
⇒ cos (2A + 2B)
∴ The required answer is cos (2A + 2B).
If sec θ + tan θ = 5, then find the value of tan θ.
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 11 Detailed Solution
Download Solution PDFGiven:
sec θ + tan θ = 5
Concept used:
If sec θ + tan θ = y
then sec θ - tan θ = 1/y
Calculation:
sec θ + tan θ = 5 ----- (1)
then,
sec θ - tan θ = 1/5 ------- (2)
Subtracting the eq. (1) and (2)
⇒ (sec θ + tan θ) - (sec θ - tan θ) = (5 - 1/5)
⇒ sec θ + tan θ - sec θ + tan θ = 24/5
⇒ 2 × tan θ = 24/5
⇒ tan θ = 12/5
∴ The correct answer is 12/5.
(cos2Ø + 1/cosec2Ø) + 17 = x. What is the value of x2?
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 12 Detailed Solution
Download Solution PDFFormula Used:
1/Cosec Ø = Sin Ø
Sin2Ø + Cos2Ø = 1
Calculation:
Cos2Ø + 1/Cosec2Ø + 17 = x
⇒ Cos2Ø + Sin2Ø + 17 = x
⇒ 1 + 17 = x
⇒ x = 18
⇒ x2 = 324
∴ The value of x2 is 324.
If sec θ - cos θ = 14 and 14 sec θ = x, then the value of x is _________.
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 13 Detailed Solution
Download Solution PDFGiven:
secθ - cosθ = 14 and 14 secθ = x
Concept used:
\(Sec\theta =\frac{1}{Cos\theta}\)
Calculations:
According to the question,
⇒ \(sec\theta - cos\theta= 14\)
⇒ \(\sec\theta-\frac{1}{sec\theta}=14\)
⇒ \( sec²\theta-1=14sec\theta\)
⇒ \(\tan^2\theta=14sec\theta\) ----(\(sec²\theta-1=tan^2\theta\))
\(\ tan²\theta=x\)
∴ The value of x is \(tan²\theta\).
If cot4θ + cot2θ = 3, then cosec4θ – cosec2θ = ?
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 14 Detailed Solution
Download Solution PDFCalculation:
cot4θ + cot2θ = 3
⇒ cos4θ/sin4θ + cos 2θ/sin 2θ
⇒ cos 2θ(cos 2θ+ sin 2θ )/sin4θ = 3 (Taking LCM)
⇒ cos 2θ/sin4θ = 3
⇒ cot2θ . cosec2θ = 3
Now, cosec4θ – cosec2θ
⇒ cosec2θ(cosec2θ – 1)
⇒ cosec2θcot2θ = 3
∴ cosec4θ – cosec2θ = 3
Evaluate the following:
cos(36° + A).cos(36° - A) + cos(54° + A).cos(54° - A)
Answer (Detailed Solution Below)
Trigonometric Ratios and Identities Question 15 Detailed Solution
Download Solution PDFGiven:
cos (36° - A) cos (36° + A) + cos (54° - A) cos (54° + A)
Formula used:
cos (a - b) = cos a cos b + sin a sin b.
sin (90 - a) = cos a
Calculation:
⇒ sin[90 – (36 – A)]sin[90 – (36 + A)] + cos (54° – A) cos (54° + A)
⇒ sin(54º + A)sin(54º – A) + cos (54° – A)cos (54° + A)
⇒ Using the identity cos(A – B),
⇒ cos(54 + A – 54 + A) = cos(2A)
Therefore, the value of cos (36° - A) cos (36° + A) + cos (54° - A) cos (54° + A) is cos(2A).