Limit and Continuity MCQ Quiz in मराठी - Objective Question with Answer for Limit and Continuity - मोफत PDF डाउनलोड करा
Last updated on Mar 8, 2025
Latest Limit and Continuity MCQ Objective Questions
Limit and Continuity Question 1:
समजा k ∈ ℝ. जर \(\lim_{x\to0^+}\left(\sin(kx)+\cos(kx)+x\right)^\frac{3}{x}\) = e9 असेल, तर k चे मूल्य असेल:
Answer (Detailed Solution Below)
Limit and Continuity Question 1 Detailed Solution
गणना:
दिलेले आहे, \(\lim_{x\to0^+}\left(\sin(kx)+\cos(kx)+x\right)^\frac{3}{x}\) = e 9
समजा, L = \(\lim_{x\to0^+}\frac{3}{x}\left(\sin(kx)+\cos(kx)+x-1\right)\)
= \(\lim_{x\to0^+}\frac{3}{x}\left(\sin(kx)+\cos(kx)+x-1\right)\)
= \(\lim_{x\to0^+}3\left(\frac{\sin(kx)}{x}+1-\frac{1-\cos(kx)}{x}\right)\)
= \(\lim_{x\to0^+}3\left(\frac{\sin(kx)}{(kx)}\cdot k+1-\frac{2\sin^2\frac{kx}{2}}{\frac{k^2x^2}{4}}\cdot \frac{k^2x}{4}\right)\)
= \(\lim_{x\to0^+}3\left(\frac{\sin(kx)}{(kx)}\cdot k+1-2\left(\frac{\sin\frac{kx}{2}}{\frac{kx}{2}}\right)\cdot \frac{k^2x}{4}\right)\)
= \(\lim_{x\to0^+}3\left(k+1-\frac{k^2x}{2}\right)\)
= ३(के + १)
∴ \(\lim_{x\to0^+}\left(\sin(kx)+\cos(kx)+x\right)^\frac{3}{x}\) = \(e^{\frac{3}{x}(\lim_{x\to0^+}\sin(kx)+\cos(kx)+x-1)}\)
= e3(k + 1) = e9
⇒ 3(k + 1) = 9
⇒ k + 1 = 3
⇒ k = 2
∴ k चे मूल्य 2 आहे.
पर्याय 1 योग्य आहे.
Top Limit and Continuity MCQ Objective Questions
Limit and Continuity Question 2:
समजा k ∈ ℝ. जर \(\lim_{x\to0^+}\left(\sin(kx)+\cos(kx)+x\right)^\frac{3}{x}\) = e9 असेल, तर k चे मूल्य असेल:
Answer (Detailed Solution Below)
Limit and Continuity Question 2 Detailed Solution
गणना:
दिलेले आहे, \(\lim_{x\to0^+}\left(\sin(kx)+\cos(kx)+x\right)^\frac{3}{x}\) = e 9
समजा, L = \(\lim_{x\to0^+}\frac{3}{x}\left(\sin(kx)+\cos(kx)+x-1\right)\)
= \(\lim_{x\to0^+}\frac{3}{x}\left(\sin(kx)+\cos(kx)+x-1\right)\)
= \(\lim_{x\to0^+}3\left(\frac{\sin(kx)}{x}+1-\frac{1-\cos(kx)}{x}\right)\)
= \(\lim_{x\to0^+}3\left(\frac{\sin(kx)}{(kx)}\cdot k+1-\frac{2\sin^2\frac{kx}{2}}{\frac{k^2x^2}{4}}\cdot \frac{k^2x}{4}\right)\)
= \(\lim_{x\to0^+}3\left(\frac{\sin(kx)}{(kx)}\cdot k+1-2\left(\frac{\sin\frac{kx}{2}}{\frac{kx}{2}}\right)\cdot \frac{k^2x}{4}\right)\)
= \(\lim_{x\to0^+}3\left(k+1-\frac{k^2x}{2}\right)\)
= ३(के + १)
∴ \(\lim_{x\to0^+}\left(\sin(kx)+\cos(kx)+x\right)^\frac{3}{x}\) = \(e^{\frac{3}{x}(\lim_{x\to0^+}\sin(kx)+\cos(kx)+x-1)}\)
= e3(k + 1) = e9
⇒ 3(k + 1) = 9
⇒ k + 1 = 3
⇒ k = 2
∴ k चे मूल्य 2 आहे.
पर्याय 1 योग्य आहे.