चौकोन MCQ Quiz in मराठी - Objective Question with Answer for Quadrilaterals - मोफत PDF डाउनलोड करा

Last updated on Mar 8, 2025

पाईये चौकोन उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा चौकोन एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Quadrilaterals MCQ Objective Questions

Top Quadrilaterals MCQ Objective Questions

चौकोन Question 1:

Let the line x + y = 1 meet the circle x2 + y2 = 4 at the points A and B. If the line perpendicular to AB and passing through the mid point of the chord AB intersects is the circle at C and D, then the area of the quadrilateral ADBC is equal to

  1. \(3 \sqrt{7} \)
  2. \( 2 \sqrt{14} \)
  3. \(5 \sqrt{7} \)
  4. \(\sqrt{14}\)

Answer (Detailed Solution Below)

Option 2 : \( 2 \sqrt{14} \)

Quadrilaterals Question 1 Detailed Solution

qImage67bc5dc8d3d032bd2ac4b30f

By solving x = y with circle

We get

\(\mathrm{C}(\sqrt{2}, \sqrt{2}) \)

\(\mathrm{D}(-\sqrt{2},-\sqrt{2})\)

By solving x + y = 1 with

circle x2 + y2 = 4

we set

\(\mathrm{A}\left(\frac{1+\sqrt{7}}{2}, \frac{1-\sqrt{7}}{2}\right) \)

\(\& \mathrm{~B}\left(\frac{1-\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right)\)

∴ Area of Quadrilateral ACBD

= 2 × Area of ΔBCD

\(=2 \times \frac{1}{2}\left|\begin{array}{ccc} \sqrt{2} & \sqrt{2} & 1 \\ \frac{1-\sqrt{7}}{2} & \frac{1+\sqrt{7}}{2} & 1 \\ -\sqrt{2} & -\sqrt{2} & 1 \end{array}\right| \)

\(=2 \sqrt{14}\)

चौकोन Question 2:

Comprehension:

Direction: Consider the following for the next two (02) items that follow.

The coordinates of three consecutive vertices of a parallelogram ABCD are A(1, 3), B(-1, 2) and C(3, 5).

What is the area of the parallelogram?

  1. 1 square unit
  2. \(\frac{3}{2}\) square units
  3. 2 square units
  4. \(\frac{5}{2}\) square units

Answer (Detailed Solution Below)

Option 3 : 2 square units

Quadrilaterals Question 2 Detailed Solution

Concept:

The diagonal of a parallelogram divides it into two parts of equal areas.

Area of triangle having three coordinates (x1, y1), (x2, y2), (x3, y3)

Area = (1/2) | [x1 (y2 – y3 ) + x2 (y– y1 ) + x3(y– y2)] |

Calculation:

F1 Amar Madhuri 13.01.2022 D3

Here in the figure diagonal AC divides ABCD into two equal parts

Area(ABCD) = 2 × Area (ΔABC)    ----(i)

Area (ΔABC) = (1/2) | [1 (2 - 5) + (-1) (5 - 3) + 3 (3 - 2)] |

⇒ Area (ΔABC) = (1/2) | [ -3 - 2 + 3 ] |

⇒ Area (ΔABC) = (1/2) | - 2  | = 1

Now, From (i), we get 

Area(ABCD) = 2 × 1 = 2

∴ The area of parallelogram is 2 square unit.

चौकोन Question 3:

Find the are of the quadilateral whose vertices are A (- 4, 5), B (0, 7), C (5, - 5) and D (- 4, - 2) ?

  1. 61.5
  2. 75.2
  3. None of these
  4. 60.5

Answer (Detailed Solution Below)

Option 4 : 60.5

Quadrilaterals Question 3 Detailed Solution

CONCEPT:

Let A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

CALCULATION:

Given: A (- 4, 5), B (0, 7), C (5, - 5) and D (- 4, - 2) are the vertices of a quadilateral ABCD

Here, we have to find the area of quadilateral ABCD

Area of quadilateral ABCD = Area of ΔABC + Area of Δ ACD

Let's find out the area of ΔABC

∵ A (- 4, 5), B (0, 7), C (5, - 5) are the vertices of ΔABC

As we know that, if A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

⇒ Area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{- 4}}&{{5}}&1\\ {{0}}&{{7}}&1\\ {{5}}&{{-5}}&1 \end{array}} \right|\)

⇒ Area of Δ ABC = 29 sq. units
 
Similarly, let's find out the area of Δ ACD
 
∵ A (- 4, 5), C (5, - 5) and D (- 4, - 2)
⇒ Area of Δ ACD = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{-4}}&{{5}}&1\\ {{5}}&{{-5}}&1\\ {{-4}}&{{-2}}&1 \end{array}} \right|\)
⇒ Area of Δ ACD = 63/2 sq units
 
⇒ Area of quadilateral ABCD = Area of ΔABC + Area of Δ ACD = (29 + (63/2)) sq. units = 60.5 sq. units
 
Hence, option D is the correct answer.

चौकोन Question 4:

If the three consecutive vertices of a parallelogram are (-2, -1), (1, 0) and (4, 3), then what are the coordinates of the fourth vertex?

  1. (1, 2)
  2. (1, 0)
  3. (0, 0)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : (1, 2)

Quadrilaterals Question 4 Detailed Solution

Concept:

Properties of a parallelogram

  • The diagonals of a parallelogram bisect each other.
  • Opposite sides of a parallelogram are congruent.
  • Opposite angles of a parallelogram are congruent.


Calculation:

Diagonals of a parallelogram bisect each other,

Let the point of intersection of diagonals be P(x, y)

So, P is mid-point of AC,

\(\left( {{\rm{x}},{\rm{\;y}}} \right) = \left( {\frac{{ - 2\; + \;4}}{2},\frac{{ - 1\; + \;3}}{2}} \right) = \left( {1,{\rm{\;}}1} \right)\) 

Let the Fourth vertex be D (xD, yD)

P is mid-point of BD,

\(\therefore \left( {{\rm{x}},{\rm{\;y}}} \right) = \left( {1,{\rm{\;}}1} \right) = \left( {\frac{{1\; + \;{{\rm{x}}_{\rm{D}}}}}{2},\frac{{0\; + \;{{\rm{y}}_{\rm{D}}}}}{2}} \right)\) 

(xD, yD) = (1, 2)

Fourth vertex of the parallelogram is D = (1, 2)

चौकोन Question 5:

Comprehension:

The coordinates of three consecutive vertices of a parallelogram ABCD are A(1,0), B(5,-1), and C(7,2)

What is the equation of the diagonal BD?

  1. x - 2y + 3 = 0
  2. 2x + y - 9 = 0
  3. x + 2y - 3 = 0
  4. ​2x - y - 3 = 0

Answer (Detailed Solution Below)

Option 2 : 2x + y - 9 = 0

Quadrilaterals Question 5 Detailed Solution

Concept:

The equation of a line passing through two points (x1, y1) and (x2, y2) is \(y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\)

In any parallelogram, the diagonals (lines linking opposite corners) bisect each other. That is each diagonal cuts the other into two equal parts.

Calculation:

The midpoint of BD is the same as the midpoint of AC

In parallelogram ABCD, A (1, 0), B (5, -1), C (7, 2), D (p, q)

The diagonals of a parallelogram bisect each other.

O is the point of intersection of AC and BD.

Since, O is the midpoint of BD, its coordinates will be,

\(\frac{1+7}{2},\frac{0+2}{2}\) = (4,1)

F1 Madhuri Defence 21.07.2022 D1

Co-ordinates of D

\(\frac{p+5}{2}=4\)

p = 3

\(\frac{q-1}{2}=1\)

q = 3

Co-ordinates of D = (3, 3)

Equation of BD

\(y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\)

Here, x1 = 3, x2 = 5, y1 = 3, y2 = -1

\((y-3)=\frac{-1-3}{5-3}\times (x-3)\)

\((y-3)=\frac{-4}{2}\times (x-3)\)

⇒ y - 3 = -2(x - 3)

⇒ 2x + y - 9 = 0

∴ The equation of the diagonal BD is 2x + y - 9 = 0

चौकोन Question 6:

Comprehension:

The coordinates of three consecutive vertices of a parallelogram ABCD are A(1,0), B(5,-1), and C(7,2)

What is the area of the parallelogram?

  1. 4 sq. units
  2. 28 sq. units
  3. 14 sq. units
  4. 7 sq. units

Answer (Detailed Solution Below)

Option 3 : 14 sq. units

Quadrilaterals Question 6 Detailed Solution

Concept:

Area of the parallelogram

  • The diagonal of a parallelogram divides it into two parts of equal areas.
  • Area of triangle having three coordinates (x1, y1), (x2, y2), (x3, y3)

          Area =\( \frac{1}{2} \left| [x_1 (y_2 – y_3) + x_2(y_3 – y_1) + x_3(y_1 – y_2)] \right|\)

Calculation:

Here in the figure, diagonal AC divides parallelogram ABCD into two equal parts

Area(ABCD) = 2 × Area (ΔABC)      ------(i)

Area (ΔABC) = \( \frac{1}{2} \left| [1 (-1 – 2) + 5(2-0) + 7(0+1)] \right|\)

⇒ Area (ΔABC) = (1/2) | [ -3 + 10 + 7 ] |

⇒ Area (ΔABC) = (1/2) | 14 | = 7

Now, From (i), we get

Area(ABCD) = 2 × 7 = 14

∴ The area of parallelogram is 14 square unit.

चौकोन Question 7:

Comprehension:

Consider a parallelogram whose vertices are A (1, 2), B (4, y), C (x, 6) and D (3, 5) taken in order

What is the area of the parallelogram?

  1. \(\frac{7}{2}\)square units
  2. 4 square units
  3. \(\frac{11}{2}\)square units
  4. square units

Answer (Detailed Solution Below)

Option 4 : 7 square units

Quadrilaterals Question 7 Detailed Solution

Concept:

  • The parallelogram whose adjacent sides are the vectors a and b then the area of the parallelogram is given by  

 

Calculation:

F1 A.K Madhu 16.05.20 D4

Let \(\overrightarrow {{\rm{AB}}} = {\rm{\;\vec a\;and\;}}\overrightarrow {{\rm{AD}}} = {\rm{\vec b}}\)

Now,

\(\overrightarrow {{\rm{AB}}} = {\rm{\;\vec a}} = \left( {4 - 1} \right){\rm{\hat i}} + \left( {3 - 2} \right){\rm{\hat j}} = 3{\rm{\hat i}} + 1{\rm{\hat j}}\)

\(\overrightarrow {{\rm{AD}}} = {\rm{\vec b}} = \;\left( {3 - 1} \right){\rm{\hat i}} + \left( {5 - 2} \right){\rm{\hat j}} = 2{\rm{\hat i}} + 3{\rm{\hat j}}\)

Now,

\({\rm{\vec a}} \times {\rm{\vec b}} = \;\left| {\begin{array}{*{20}{c}} {{\rm{\hat i}}}&{{\rm{\hat j}}}&{{\rm{\hat k}}}\\ 3&1&0\\ 2&3&0 \end{array}} \right| = 0 - 0 + \;{\rm{\hat k}}\left( {9 - 2} \right) = 7{\rm{\hat k}}\;\)

Now,

area of the parallelogram = \(\left| {{\rm{\vec a}} \times {\rm{\vec b}}} \right|\) = 7square units

Hence, option 4 is correct.

 

चौकोन Question 8:

In quadrilateral ABCD, the side BD = 30 cm and the heights of the triangles ABD and BCD are 10 cm and 14 cm, respectively. then the area of the quadrilateral ABCD is

  1. 160 cm2
  2. 180 cm2
  3. 300 cm2
  4. 360 cm2

Answer (Detailed Solution Below)

Option 4 : 360 cm2

Quadrilaterals Question 8 Detailed Solution

Concept:

Area of Quadrilateral

Area of quadrilateral = \(\frac{1}{2}\) × diagonal × (sum of height of two triangles)

 = \(\frac{1}{2}\) × diagonal × (h1 + h2)

Calculation:

Diagonal = BD = 30 cm

Heights, h1 = 10 cm & h2 = 14 cm

Sum of the heights of the triangles = h1 + h2 = 10 + 14 = 24 cm

Thus, area of quadrilateral ABCD = \(\frac{1}{2}\) × diagonal × (sum of height of two triangles)

= \(\frac{(30 \times 24)}{2}\) = 360 cm2

∴ Area of the quadrilateral ABCD is 360 cm2

चौकोन Question 9:

if coordinates of one diagonal of rectangle are (2, 1) and (4, 3) and other two vertices lie on the line 2x - y = k then the value of k will be 

  1. -4
  2. 2
  3. 4
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 4

Quadrilaterals Question 9 Detailed Solution

Formula used:

The midpoint of two-point (x1, y1) and (x2, y2) is given by

\((\frac{x_1\ +\ x_2}{2}, \frac{y_1\ +\ y_2}{2})\)

Calculation:

Given that, point (2, 1) and (4, 3) are opposite vertices of rectangle 

F1 Sachin mishra Shraddha 06.10.2021 D4

The mid-point of A(2, 1) and C(4, 3) 

\((\frac{2\ +\ 4}{2},\ \frac{1\ +\ 3}{2})\) = (3, 2)

We know that the intersecting point of the diagonal of a rectangle is the same or at the midpoint. 

Therefore, the point (3, 2) will satisfy the equation 2x - y = k

⇒ 2(3) - 2 = k

⇒ k = 4

Hence, option 3 is correct.

Additional Information1. Equation of line of slope m passing through the point (x1, y1) is

(y - y1) = m(x - x1)

2. Equation of line passing through (x1, y1) and (x2, y2) is 

\((y\ -\ y_1)\ =\ \frac{y_2\ -\ y_1}{x_2\ -\ x_1}(x\ -\ x_1)\)

चौकोन Question 10:

The diagonals of a quadrilateral ABCD are along the lines x + 3y = 4 and 6x - 2y = 7. Then, ABCD must be a

  1. rhombus
  2. parallelogram
  3. cyclic quadrilateral
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : rhombus

Quadrilaterals Question 10 Detailed Solution

Concept:

If the diagonals of a quadrilateral are perpendicular, then it is a rhombus

Slope of line ax + by + c = 0 is -a/b

If m1 and m2 are the slope of two perpendicular lines then 

m× m2 = - 1

Calculation:

Given, x + 3y = 4       __(i)

Slope of (i) = m1 = -1/3

6x - 2y = 7              ___(ii)

Slope of (ii) = m2 = 6/2 = 3

Since, m1m-1 

⇒ The diagonals of a quadrilateral are perpendicular

⇒ ABCD must be rhombus.

∴ The correct answer is option (1).

Get Free Access Now
Hot Links: teen patti noble rummy teen patti teen patti boss teen patti mastar teen patti chart